Mark E Hester

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4179805/publications.pdf

Version: 2024-02-01

430874 501196 2,015 31 18 28 citations h-index g-index papers 36 36 36 3442 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	Cerebral organoids containing an <i>AUTS2</i> missense variant model microcephaly. Brain, 2023, 146, 387-404.	7.6	11
2	Modeling neurodegenerative diseases with cerebral organoids and other three-dimensional culture systems: focus on Alzheimer's disease. Stem Cell Reviews and Reports, 2022, 18, 696-717.	3.8	28
3	Intrauterine drug exposure as a risk factor for cerebral palsy. Developmental Medicine and Child Neurology, 2022, 64, 453-461.	2.1	3
4	Assessment of Beta-2 Microglobulin Gene Edited Airway Epithelial Stem Cells as a treatment for Sulfur Mustard Inhalation. Frontiers in Genome Editing, 2022, 4, 781531.	5. 2	0
5	AUTS2 Syndrome: Molecular Mechanisms and Model Systems. Frontiers in Molecular Neuroscience, 2022, 15, 858582.	2.9	14
6	LGG-47. Single-cell RNA Sequencing Reveals Immunosuppressive Myeloid Cell Diversity During Malignant Progression in Glioma. Neuro-Oncology, 2022, 24, i99-i99.	1.2	0
7	Generation of Neurosphereâ€Derived Organoidâ€Likeâ€Aggregates (NEDAS) from Neural Stem Cells. Current Protocols, 2021, 1, e15.	2.9	6
8	PTEN somatic mutations contribute to spectrum of cerebral overgrowth. Brain, 2021, 144, 2971-2978.	7.6	23
9	Electrophysiological Maturation of Cerebral Organoids Correlates with Dynamic Morphological and Cellular Development. Stem Cell Reports, 2020, 15, 855-868.	4.8	94
10	Brd2 haploinsufficiency extends lifespan and healthspan in C57B6/J mice. PLoS ONE, 2020, 15, e0234910.	2.5	6
11	Modeling Human Brain Circuitry Using Pluripotent Stem Cell Platforms. Frontiers in Pediatrics, 2019, 7, 57.	1.9	20
12	648: Human induced pluripotent stem cells (iPSCs) derived 3D model for early placental HCMV infections. American Journal of Obstetrics and Gynecology, 2019, 220, S430-S431.	1.3	0
13	Gabapentin Use for Hospitalized Neonates. Pediatric Neurology, 2019, 97, 64-70.	2.1	11
14	iPhemap: an atlas of phenotype to genotype relationships of human iPSC models of neurological diseases. EMBO Molecular Medicine, 2017, 9, 1742-1762.	6.9	24
15	Maternal high fat diet exposure is associated with increased hepcidin levels, decreased myelination, and neurobehavioral changes in male offspring. Brain, Behavior, and Immunity, 2016, 58, 369-378.	4.1	69
16	Stability Characterization of a Polysorbate 80-Dimethyl Trisulfide Formulation, a Cyanide Antidote Candidate. Drugs in R and D, 2016, 16, 109-127.	2.2	10
17	Nextâ€generation sequencing approach to epigeneticâ€based tissue source attribution. Electrophoresis, 2014, 35, 3096-3101.	2.4	10
18	Aging brain microenvironment decreases hippocampal neurogenesis through Wntâ€mediated survivin signaling. Aging Cell, 2012, 11, 542-552.	6.7	133

#	Article	IF	CITATIONS
19	Short-read, high-throughput sequencing technology for STR genotyping. BioTechniques, 2012, , .	1.8	30
20	Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nature Biotechnology, 2011, 29, 824-828.	17.5	696
21	Rapid and Efficient Generation of Functional Motor Neurons From Human Pluripotent Stem Cells Using Gene Delivered Transcription Factor Codes. Molecular Therapy, 2011, 19, 1905-1912.	8.2	168
22	AAV4-mediated Expression of IGF-1 and VEGF Within Cellular Components of the Ventricular System Improves Survival Outcome in Familial ALS Mice. Molecular Therapy, 2010, 18, 2075-2084.	8.2	111
23	Acetylcholine negatively regulates development of the neuromuscular junction through distinct cellular mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10702-10707.	7.1	36
24	Two Factor Reprogramming of Human Neural Stem Cells into Pluripotency. PLoS ONE, 2009, 4, e7044.	2.5	60
25	AAV as a Gene Transfer Vector for the Treatment of Neurological Disorders: Novel Treatment Thoughts for ALS. Current Gene Therapy, 2009, 9, 428-433.	2.0	49
26	Delivery of AAV-IGF-1 to the CNS Extends Survival in ALS Mice Through Modification of Aberrant Glial Cell Activity. Molecular Therapy, 2008, 16, 1056-1064.	8.2	146
27	Gene transfer demonstrates that muscle is not a primary target for non-cell-autonomous toxicity in familial amyotrophic lateral sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19546-19551.	7.1	140
28	Smad1 and Smad8 Function Similarly in Mammalian Central Nervous System Development. Molecular and Cellular Biology, 2005, 25, 4683-4692.	2.3	24
29	Generation of novel conditional and hypomorphic alleles of the Smad 2 gene. Genesis, 2004, 40, 118-123.	1.6	29
30	Smad2 and Smad3 coordinately regulate craniofacial and endodermal development. Developmental Biology, 2004, 270, 411-426.	2.0	46
31	Spatially Resolved Transcriptomics Reveals Gene Signatures Underlying the Vulnerability of Human Middle Temporal Gyrus in Alzheimer's Disease. SSRN Electronic Journal, 0, , .	0.4	O