
Jan StrejÄek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/417965/publications.pdf Version: 2024-02-01

ΙΔΝΙ ΣΤΟΕΙΆΕΚ

#	Article	IF	CITATIONS
1	Symbiotic 9: String Analysis and Backward Symbolic Execution with Loop Folding. Lecture Notes in Computer Science, 2022, , 462-467.	1.3	12
2	Symbiotic-Witch: A Klee-Based Violation Witness Checker. Lecture Notes in Computer Science, 2022, , 468-473.	1.3	6
3	Symbiotic 8: Beyond Symbolic Execution. Lecture Notes in Computer Science, 2021, , 453-457.	1.3	9
4	Fast Computation of Strong Control Dependencies. Lecture Notes in Computer Science, 2021, , 887-910.	1.3	0
5	DQBDD: An Efficient BDD-Based DQBF Solver. Lecture Notes in Computer Science, 2021, , 535-544.	1.3	1
6	Backward Symbolic Execution with Loop Folding. Lecture Notes in Computer Science, 2021, , 49-76.	1.3	6
7	Joint forces for memory safety checking revisited. International Journal on Software Tools for Technology Transfer, 2020, 22, 115-133.	1.9	7
8	Symbiotic Â6: generating test cases by slicing and symbolic execution. International Journal on Software Tools for Technology Transfer, 2020, , 1.	1.9	4
9	Speeding up Quantified Bit-Vector SMT Solvers by Bit-Width Reductions andÂExtensions. Lecture Notes in Computer Science, 2020, , 378-393.	1.3	0
10	Seminator 2 Can Complement Generalized Büchi Automata via Improved Semi-determinization. Lecture Notes in Computer Science, 2020, , 15-27.	1.3	5
11	Q3B: An Efficient BDD-based SMT Solver for Quantified Bit-Vectors. Lecture Notes in Computer Science, 2019, , 64-73.	1.3	3
12	Evaluation of Program Slicing in Software Verification. Lecture Notes in Computer Science, 2019, , 101-119.	1.3	8
13	LTL to Smaller Self-Loop Alternating Automata and Back. Lecture Notes in Computer Science, 2019, , 152-171.	1.3	2
14	ltl3tela: LTL to Small Deterministic or Nondeterministic Emerson-Lei Automata. Lecture Notes in Computer Science, 2019, , 357-365.	1.3	5
15	Joint Forces for Memory Safety Checking. Lecture Notes in Computer Science, 2018, , 115-132.	1.3	18
16	On the complexity of the quantified bit-vector arithmetic with binary encoding. Information Processing Letters, 2018, 135, 57-61.	0.6	0
17	SymbioticÂ5: Boosted Instrumentation. Lecture Notes in Computer Science, 2018, , 442-446.	1.3	11
18	Abstraction of Bit-Vector Operations for BDD-Based SMT Solvers. Lecture Notes in Computer Science, 2018, , 273-291.	1.3	2

Jan StrejÄek

#	Article	IF	CITATIONS
19	On Simplification of Formulas with Unconstrained Variables and Quantifiers. Lecture Notes in Computer Science, 2017, , 364-379.	1.3	2
20	Symbiotic 4: Beyond Reachability. Lecture Notes in Computer Science, 2017, , 385-389.	1.3	14
21	Complementing Semi-deterministic Büchi Automata. Lecture Notes in Computer Science, 2016, , 770-787.	1.3	15
22	Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams. Lecture Notes in Computer Science, 2016, , 267-283.	1.3	11
23	Tighter Loop Bound Analysis. Lecture Notes in Computer Science, 2016, , 512-527.	1.3	1
24	Symbiotic 3: New Slicer and Error-Witness Generation. Lecture Notes in Computer Science, 2016, , 946-949.	1.3	7
25	The Hanoi Omega-Automata Format. Lecture Notes in Computer Science, 2015, , 479-486.	1.3	56
26	Is there a best büchi automaton for explicit model checking?. , 2014, , .		4
27	Symbolic Memory with Pointers. Lecture Notes in Computer Science, 2014, , 380-395.	1.3	13
28	Symbiotic 2: More Precise Slicing. Lecture Notes in Computer Science, 2014, , 415-417.	1.3	3
29	Compact Symbolic Execution. Lecture Notes in Computer Science, 2013, , 193-207.	1.3	6
30	Effective Translation of LTL to Deterministic Rabin Automata: Beyond the (F,G)-Fragment. Lecture Notes in Computer Science, 2013, , 24-39.	1.3	26
31	Symbiotic: Synergy of Instrumentation, Slicing, and Symbolic Execution. Lecture Notes in Computer Science, 2013, , 630-632.	1.3	12
32	Compositional Approach to Suspension and Other Improvements to LTL Translation. Lecture Notes in Computer Science, 2013, , 81-98.	1.3	21
33	Comparison of LTL to Deterministic Rabin Automata Translators. Lecture Notes in Computer Science, 2013, , 164-172.	1.3	13
34	Abstracting path conditions. , 2012, , .		18
35	Almost linear Büchi automata. Mathematical Structures in Computer Science, 2012, 22, 203-235.	0.6	2
36	LTL to Büchi Automata Translation: Fast and More Deterministic. Lecture Notes in Computer Science, 2012, , 95-109.	1.3	77

Jan StrejÄek

#	Article	IF	CITATIONS
37	Checking Properties Described by State Machines: On Synergy of Instrumentation, Slicing, and Symbolic Execution. Lecture Notes in Computer Science, 2012, , 207-221.	1.3	15
38	Reachability is decidable for weakly extended process rewrite systems. Information and Computation, 2009, 207, 671-680.	0.7	3
39	On decidability of LTL model checking for process rewrite systems. Acta Informatica, 2009, 46, 1-28.	0.5	11
40	On Decidability of LTL+Past Model Checking for Process Rewrite Systems. Electronic Notes in Theoretical Computer Science, 2009, 239, 105-117.	0.9	0
41	Petri nets are less expressive than state-extended PA. Theoretical Computer Science, 2008, 394, 134-140.	0.9	0
42	On Symbolic Verification of Weakly Extended PAD. Electronic Notes in Theoretical Computer Science, 2007, 175, 47-64.	0.9	1
43	Refining the Undecidability Border of Weak Bisimilarity. Electronic Notes in Theoretical Computer Science, 2006, 149, 17-36.	0.9	1
44	On Decidability of LTL Model Checking for Process Rewrite Systems. Lecture Notes in Computer Science, 2006, , 248-259.	1.3	3
45	The stuttering principle revisited. Acta Informatica, 2005, 41, 415-434.	0.5	24
46	Reachability of Hennessy-Milner Properties for Weakly Extended PRS. Lecture Notes in Computer Science, 2005, , 213-224.	1.3	9
47	On Extensions of Process Rewrite Systems: Rewrite Systems with Weak Finite-State Unit. Electronic Notes in Theoretical Computer Science, 2004, 98, 75-88.	0.9	8
48	Extended Process Rewrite Systems: Expressiveness and Reachability. Lecture Notes in Computer Science, 2004, , 355-370.	1.3	15
49	Rewrite Systems with Constraints. Electronic Notes in Theoretical Computer Science, 2002, 52, 46-65.	0.9	5
50	The Stuttering Principle Revisited: On the Expressiveness of Nested X and $\hat{a} f$ Operators in the Logic LTL. Lecture Notes in Computer Science, 2002, , 276-291.	1.3	3
51	Almost Linear Büchi Automata. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 8, 16-25.	0.8	1