Mehmet Copuroglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4179465/publications.pdf

Version: 2024-02-01

840776 752698 33 424 11 20 citations g-index h-index papers 33 33 33 639 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A polymeric nanocomposite system for potential adhesive applications in restorative dentistry. Journal of Adhesion Science and Technology, 2017, 31, 602-612.	2.6	1
2	Location and Visualization of Working p-n and/or n-p Junctions by XPS. Scientific Reports, 2016, 6, 32482.	3.3	3
3	Synthesis and characterization of a Zrâ€containing silicateâ€based epoxyâ€functional polymer nanocomposite system. Polymer Engineering and Science, 2015, 55, 792-798.	3.1	6
4	Gate-Tunable Photoemission from Graphene Transistors. Nano Letters, 2014, 14, 2837-2842.	9.1	32
5	Tribological interaction between polytetrafluoroethylene and silicon oxide surfaces. Journal of Chemical Physics, 2014, 141, 164702.	3.0	6
6	Lightâ€euring of a sol–gelâ€derived silicateâ€based epoxyâ€functional polymer nanocomposite material system. Polymer Composites, 2014, 35, 1879-1887.	4.6	3
7	Effect of processing options on ultra-low-loss lead–magnesium–niobium titanate thin films for high density capacitors. Thin Solid Films, 2013, 541, 117-120.	1.8	2
8	Band-Bending at Buried SiO ₂ /Si Interface as Probed by XPS. ACS Applied Materials & Interfaces, 2013, 5, 5875-5881.	8.0	54
9	Identification of relationship between the synthesis/process parameters and properties of a sol–gelâ€derived polymer nanocomposite system. Journal of Applied Polymer Science, 2013, 129, 3704-3709.	2.6	5
10	Ultraviolet-radiation-curing of an organically modified silicate-based material system with epoxy functionality, and the role of titanium. Radiation Physics and Chemistry, 2012, 81, 1324-1327.	2.8	6
11	Temperature behavior of electrical properties of high-k lead–magnesium–niobium titanate thin-films. Thin Solid Films, 2012, 520, 4523-4526.	1.8	2
12	Capacitance and \$S\$-Parameter Techniques for Dielectric Characterization With Application to High-\$k\$ PMNT Thin-Film Layers. IEEE Transactions on Electron Devices, 2012, 59, 1723-1729.	3.0	8
13	The effect of dopants on the morphology, microstructure and electrical properties of transparent zinc oxide films prepared by the sol-gel method. Thin Solid Films, 2011, 520, 1174-1177.	1.8	5
14	Effect of nanoparticles on ferroelectric and electrical properties of novel PMNT thin-films. Thin Solid Films, 2011, 519, 5800-5803.	1.8	4
15	Evaluation of process parameters and nanoparticle seeding of sol–gel derived lead–magnesium–niobium titanate thin films. Advances in Applied Ceramics, 2011, 110, 490-495.	1.1	O
16	Sol-gel-derived lead-magnesium-niobium titanate thin films for ultrahigh-value capacitor applications. IOP Conference Series: Materials Science and Engineering, 2010, 8, 012007.	0.6	5
17	Modelling and characterisation of high-k dielectric Thin-films using microwave techniques. IOP Conference Series: Materials Science and Engineering, 2010, 8, 012020.	0.6	O
18	UV-/thermal processing of sol–gel-derived lead–magnesium–niobium titanate thin films. Thin Solid Films, 2010, 518, 4503-4507.	1.8	3

#	Article	IF	CITATIONS
19	Zinc oxide thin films: Characterization and potential applications. Thin Solid Films, 2010, 518, 4515-4519.	1.8	66
20	Electrical characterization of novel PMNT thin-films. , 2010, , .		3
21	High-Performance MIM Capacitors Using Novel PMNT Thin Films. IEEE Electron Device Letters, 2010, 31, 996-998.	3.9	12
22	Comparative characterisation of zinc oxide thin films prepared from zinc acetate with or without water of hydration via the sol–gel method. Journal of Sol-Gel Science and Technology, 2009, 52, 432-438.	2.4	29
23	Sol–gel synthesis, comparative characterisation, and reliability analyses of undoped and Al-doped zinc oxide thin films. Thin Solid Films, 2009, 517, 6323-6326.	1.8	17
24	Reproducibility evaluation and Al doping of sol–gel-derived single- and multi-layer zinc oxide thin films. Applied Surface Science, 2009, 256, 737-743.	6.1	2
25	Effect of preparation conditions on the thermal stability of an epoxy-functional inorganic–organic hybrid material system doped with Zr. Thermochimica Acta, 2007, 452, 7-12.	2.7	3
26	Preparation and characterisation of an epoxy-functional inorganic–organic hybrid material system with phenyl side group for waveguiding applications. Thin Solid Films, 2007, 515, 5439-5443.	1.8	7
27	Effects of refractive index modifiers and UV light on an epoxy-functional inorganic–organic hybrid sol–gel derived thin film system. Applied Surface Science, 2007, 253, 7969-7972.	6.1	14
28	Effect of preparation conditions on the thermal stability of an epoxy-functional inorganic–organic hybrid material system with phenyl side group. Polymer Degradation and Stability, 2006, 91, 3185-3190.	5.8	11
29	Effect of preparation conditions on the optical and physical properties of an epoxy-functional inorganic-organic hybrid material system. Journal of Sol-Gel Science and Technology, 2006, 40, 75-82.	2.4	13
30	Influence of gamma irradiation on the ageing characteristics of poly(ethylene-co-vinyl acetate) and poly(ethylene-co-vinyl acetate)/carbon black mixture. Journal of Thermal Analysis and Calorimetry, 2006, 86, 223-227.	3.6	7
31	A comparative study of gamma irradiation of poly(ethylene-co-vinyl acetate) and poly(ethylene-co-vinyl) Tj ETQq1	1,0,7843 4.0	14 rgBT /Ov 28
32	A comparative study of UV aging characteristics of poly(ethylene-co-vinyl acetate) and poly(ethylene-co-vinyl acetate)/carbon black mixture. Polymers for Advanced Technologies, 2005, 16, 61-66.	3.2	29
33	A comparative study of thermal ageing characteristics of poly(ethylene-co-vinyl acetate) and poly(ethylene-co-vinyl acetate)/carbon black mixture. Polymers for Advanced Technologies, 2004, 15, 393-399.	3.2	38