Roy Tarnuzzer

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4179365/roy-tarnuzzer-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

58	25,906	53	62
papers	citations	h-index	g-index
62 ext. papers	36,170 ext. citations	26.1 avg, IF	4·47 L-index

#	Paper	IF	Citations
58	The Exceptional Responders Initiative: Feasibility of a National Cancer Institute Pilot Study. <i>Journal of the National Cancer Institute</i> , 2021 , 113, 27-37	9.7	9
57	Molecular Features of Cancers Exhibiting Exceptional Responses to Treatment. <i>Cancer Cell</i> , 2021 , 39, 38-53.e7	24.3	18
56	An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. <i>Cell</i> , 2018 , 173, 400-416.e11	56.2	1072
55	Comprehensive Characterization of Cancer Driver Genes and Mutations. <i>Cell</i> , 2018 , 173, 371-385.e18	56.2	854
54	Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. <i>Cell</i> , 2018 , 173, 291-304.e6	56.2	888
53	A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. <i>Cell</i> , 2018 , 173, 386-399	. e 5162.2	133
52	Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. <i>Cell</i> , 2018 , 173, 305-320.e10	56.2	166
51	Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. <i>Cell</i> , 2018 , 173, 338-354.e15	56.2	560
50	Oncogenic Signaling Pathways in The Cancer Genome Atlas. <i>Cell</i> , 2018 , 173, 321-337.e10	56.2	1124
49	Pathogenic Germline Variants in 10,389 Adult Cancers. Cell, 2018, 173, 355-370.e14	56.2	342
48	Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. <i>Cell Reports</i> , 2018 , 23, 282-296.e4	10.6	188
47	Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. <i>Cell Reports</i> , 2018 , 23, 227-238.e3	10.6	235
46	Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. <i>Cell Reports</i> , 2018 , 23, 194-212.e6	10.6	146
45	Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context. <i>Cell Reports</i> , 2018 , 23, 297-312.e12	10.6	147
44	The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. <i>Cell Reports</i> , 2018 , 23, 313-326.e5	10.6	295
43	Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. <i>Cell Reports</i> , 2018 , 23, 181-193.e7	10.6	366
42	The Immune Landscape of Cancer. <i>Immunity</i> , 2018 , 48, 812-830.e14	32.3	1754

41	Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. <i>Cell Reports</i> , 2018 , 23, 172-180.e3	10.6	66
40	Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types. <i>Cell Reports</i> , 2018 , 23, 213-2	2 26.6 3	56
39	Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. <i>Cell Reports</i> , 2018 , 23, 239-254.e6	10.6	405
38	Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. <i>Cell Reports</i> , 2018 , 23, 255-269.e4	10.6	112
37	Systematic Analysis of Splice-Site-Creating Mutations in Cancer. <i>Cell Reports</i> , 2018 , 23, 270-281.e3	10.6	121
36	The Integrated Genomic Landscape of Thymic Epithelial Tumors. <i>Cancer Cell</i> , 2018 , 33, 244-258.e10	24.3	150
35	Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. <i>Cell Systems</i> , 2018 , 6, 271-281.e7	10.6	320
34	Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. <i>Cell Systems</i> , 2018 , 6, 282-300.e2	10.6	159
33	lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic lncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer. <i>Cancer Cell</i> , 2018 , 33, 706-720.e9	24.3	275
32	Genomic and Functional Approaches to Understanding Cancer Aneuploidy. <i>Cancer Cell</i> , 2018 , 33, 676-68	9. e 3	377
31	Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. <i>Cancer Cell</i> , 2018 , 33, 721-735.e8	24.3	228
30	A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. <i>Cancer Cell</i> , 2018 , 33, 690-705.e9	24.3	277
29	Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. <i>Cancer Cell</i> , 2018 , 34, 211-224.e6	24.3	327
28	Integrated Molecular Characterization of Testicular Germ Cell Tumors. <i>Cell Reports</i> , 2018 , 23, 3392-3406	510.6	200
27	A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF- S uperfamily. <i>Cell Systems</i> , 2018 , 7, 422-437.e7	10.6	85
26	The chromatin accessibility landscape of primary human cancers. <i>Science</i> , 2018 , 362,	33.3	392
25	Comprehensive Molecular Characterization of the Hippo Signaling Pathway in Cancer. <i>Cell Reports</i> , 2018 , 25, 1304-1317.e5	10.6	152
24	Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. <i>Cancer Cell</i> , 2017 , 31, 181-193	24.3	350

23	Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. <i>Cell</i> , 2017 , 169, 1327-1341.e23	56.2	1125
22	Integrated Molecular Characterization of Uterine Carcinosarcoma. <i>Cancer Cell</i> , 2017 , 31, 411-423	24.3	210
21	Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. <i>Cell Reports</i> , 2017 , 18, 2780-2794	10.6	247
20	Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. <i>Cell</i> , 2017 , 171, 540-556	. e ;255 <u>2</u>	961
19	Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. <i>Cancer Cell</i> , 2017 , 32, 204-220.e15	24.3	391
18	Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. <i>Cell</i> , 2017 , 171, 950-965.e28	56.2	451
17	Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. <i>New England Journal of Medicine</i> , 2016 , 374, 135-45	59.2	753
16	Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell, 2016, 29, 723-	736 .3	324
15	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. <i>New England Journal of Medicine</i> , 2015 , 372, 2481-98	59.2	1828
14	Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. <i>Cell</i> , 2015 , 163, 506-19	56.2	1055
13	Integrated genomic characterization of papillary thyroid carcinoma. <i>Cell</i> , 2014 , 159, 676-90	56.2	1660
12	The somatic genomic landscape of glioblastoma. <i>Cell</i> , 2013 , 155, 462-77	56.2	29 00
11	Matrix metalloproteinase inhibition modulates fibroblast-mediated matrix contraction and collagen production in vitro. <i>Investigative Ophthalmology and Visual Science</i> , 2003 , 44, 1104-10		103
10	Messenger RNA levels for genes involved in extracellular matrix from human corneal scrapings before and after photorefractive keratectomy. <i>Acta Ophthalmologica</i> , 1998 , 76, 568-72		8
9	Changes in the expression of extracellular matrix (ECM) and matrix metalloproteinases (MMP) of proliferating rat parotid acinar cells. <i>Journal of Dental Research</i> , 1998 , 77, 1504-14	8.1	15
8	Differential expression of matrix metalloproteinases and their tissue inhibitors in leiomyomata: a mechanism for gonadotrophin releasing hormone agonist-induced tumour regression. <i>Molecular Human Reproduction</i> , 1997 , 3, 1005-14	4.4	46
7	Estrogen accelerates cutaneous wound healing associated with an increase in TGF-beta1 levels. <i>Nature Medicine</i> , 1997 , 3, 1209-15	50.5	448
6	Extracellular-matrix gene expression during mouse submandibular gland development. <i>Archives of Oral Biology</i> , 1997 , 42, 443-54	2.8	13

LIST OF PUBLICATIONS

5	Age-related differences in the temporal and spatial regulation of matrix metalloproteinases (MMPs) in normal skin and acute cutaneous wounds of healthy humans. <i>Cell and Tissue Research</i> , 1997 , 290, 581-91	4.2	153
4	Alpha-smooth muscle actin expression in rat and mouse mesenteric wounds after transforming growth factor-beta1 treatment. <i>Wound Repair and Regeneration</i> , 1997 , 5, 339-47	3.6	7
3	Biochemical analysis of acute and chronic wound environments. <i>Wound Repair and Regeneration</i> , 1996 , 4, 321-5	3.6	284
2	Competitive RNA templates for detection and quantitation of growth factors, cytokines, extracellular matrix components and matrix metalloproteinases by RT-PCR. <i>BioTechniques</i> , 1996 , 20, 670-4	2.5	43
1	Colon cancer cells that are not growth inhibited by TGF-beta lack functional type I and type II TGF-beta receptors. <i>Annals of Surgery</i> , 1995 , 221, 767-76; discussion 776-7	7.8	24