Roy Tarnuzzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4179365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Somatic Genomic Landscape of Glioblastoma. Cell, 2013, 155, 462-477.	28.9	3,979
2	The Immune Landscape of Cancer. Immunity, 2018, 48, 812-830.e14.	14.3	3,706
3	Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. New England Journal of Medicine, 2015, 372, 2481-2498.	27.0	2,582
4	Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell, 2014, 159, 676-690.	28.9	2,318
5	An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell, 2018, 173, 400-416.e11.	28.9	2,277
6	Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell, 2018, 173, 321-337.e10.	28.9	2,111
7	Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma. Cell, 2017, 169, 1327-1341.e23.	28.9	1,794
8	Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell, 2017, 171, 540-556.e25.	28.9	1,742
9	Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell, 2018, 173, 291-304.e6.	28.9	1,718
10	Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell, 2018, 173, 371-385.e18.	28.9	1,670
11	Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell, 2015, 163, 506-519.	28.9	1,485
12	Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation. Cell, 2018, 173, 338-354.e15.	28.9	1,417
13	Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. New England Journal of Medicine, 2016, 374, 135-145.	27.0	1,040
14	Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell Reports, 2018, 23, 239-254.e6.	6.4	801
15	The chromatin accessibility landscape of primary human cancers. Science, 2018, 362, .	12.6	781
16	Genomic and Functional Approaches to Understanding Cancer Aneuploidy. Cancer Cell, 2018, 33, 676-689.e3.	16.8	750
17	Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell, 2017, 171, 950-965.e28.	28.9	738
18	Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Reports, 2018, 23, 181-193.e7.	6.4	683

Roy Tarnuzzer

#	Article	IF	CITATIONS
19	Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. Cancer Cell, 2017, 32, 204-220.e15.	16.8	642
20	Comprehensive Analysis of Alternative Splicing Across Tumors from 8,705 Patients. Cancer Cell, 2018, 34, 211-224.e6.	16.8	623
21	Pathogenic Germline Variants in 10,389 Adult Cancers. Cell, 2018, 173, 355-370.e14.	28.9	620
22	Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. Cell Systems, 2018, 6, 271-281.e7.	6.2	605
23	Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma. Cancer Cell, 2017, 31, 181-193.	16.8	532
24	The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma. Cell Reports, 2018, 23, 313-326.e5.	6.4	523
25	Estrogen accelerates cutaneous wound healing associated with an increase in TGF-β1 levels. Nature Medicine, 1997, 3, 1209-1215.	30.7	513
26	Comprehensive Pan-Genomic Characterization of Adrenocortical Carcinoma. Cancer Cell, 2016, 29, 723-736.	16.8	482
27	A Comprehensive Pan-Cancer Molecular Study of Gynecologic and Breast Cancers. Cancer Cell, 2018, 33, 690-705.e9.	16.8	478
28	Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles. Cell Reports, 2017, 18, 2780-2794.	6.4	416
29	Driver Fusions and Their Implications in the Development and Treatment of Human Cancers. Cell Reports, 2018, 23, 227-238.e3.	6.4	407
30	lncRNA Epigenetic Landscape Analysis Identifies EPIC1 as an Oncogenic IncRNA that Interacts with MYC and Promotes Cell-Cycle Progression in Cancer. Cancer Cell, 2018, 33, 706-720.e9.	16.8	400
31	Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell, 2018, 33, 721-735.e8.	16.8	396
32	Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types. Cell Reports, 2018, 23, 282-296.e4.	6.4	333
33	Comprehensive Molecular Characterization of the Hippo Signaling Pathway in Cancer. Cell Reports, 2018, 25, 1304-1317.e5.	6.4	329
34	Biochemical analysis of acute and chronic wound environments. Wound Repair and Regeneration, 1996, 4, 321-325.	3.0	328
35	Integrated Molecular Characterization of Testicular Germ Cell Tumors. Cell Reports, 2018, 23, 3392-3406.	6.4	324
36	Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell, 2017, 31, 411-423.	16.8	309

Roy Tarnuzzer

#	Article	IF	CITATIONS
37	Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Systems, 2018, 6, 282-300.e2.	6.2	284
38	Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics. Cell, 2018, 173, 305-320.e10.	28.9	272
39	The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell, 2018, 33, 244-258.e10.	16.8	270
40	Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas. Cell Reports, 2018, 23, 194-212.e6.	6.4	245
41	A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples. Cell, 2018, 173, 386-399.e12.	28.9	228
42	Pan-Cancer Analysis of IncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context. Cell Reports, 2018, 23, 297-312.e12.	6.4	205
43	Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. Cell Reports, 2018, 23, 255-269.e4.	6.4	204
44	Systematic Analysis of Splice-Site-Creating Mutations in Cancer. Cell Reports, 2018, 23, 270-281.e3.	6.4	177
45	Age-related differences in the temporal and spatial regulation of matrix metalloproteinases (MMPs) in normal skin and acute cutaneous wounds of healthy humans. Cell and Tissue Research, 1997, 290, 581-591.	2.9	172
46	A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-l² Superfamily. Cell Systems, 2018, 7, 422-437.e7.	6.2	134
47	Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell Reports, 2018, 23, 172-180.e3.	6.4	119
48	Matrix Metalloproteinase Inhibition Modulates Fibroblast-Mediated Matrix Contraction and Collagen Production In Vitro. , 2003, 44, 1104.		117
49	Integrated Genomic Analysis of the Ubiquitin Pathway across Cancer Types. Cell Reports, 2018, 23, 213-226.e3.	6.4	83
50	Molecular Features of Cancers Exhibiting Exceptional Responses to Treatment. Cancer Cell, 2021, 39, 38-53.e7.	16.8	65
51	Differential expression of matrix metalloproteinases and their tissue inhibitors in leiomyomata: a mechanism for gonadotrophin releasing hormone agonist-induced tumour regression. Molecular Human Reproduction, 1997, 3, 1005-1014.	2.8	64
52	Competitive RNA templates for detection and quantitation of growth factors, cytokines, extracellular matrix components and matrix metalloproteinases by RT-PCR. BioTechniques, 1996, 20, 670-4.	1.8	57
53	Colon Cancer Cells That Are Not Growth Inhibited by TGF-Î ² Lack Functional Type I and Type II TGF-Î ² Receptors. Annals of Surgery, 1995, 221, 767-777.	4.2	27
54	The Exceptional Responders Initiative: Feasibility of a National Cancer Institute Pilot Study. Journal of the National Cancer Institute, 2021, 113, 27-37.	6.3	17

ROY TARNUZZER

#	Article	IF	CITATIONS
55	Changes in the Expression of Extracellular Matrix (ECM) and Matrix Metalloproteinases (MMP) of Proliferating Rat Parotid Acinar Cells. Journal of Dental Research, 1998, 77, 1504-1514.	5.2	15
56	Extracellular-matrix gene expression during mouse submandibular gland development. Archives of Oral Biology, 1997, 42, 443-454.	1.8	13
57	Alpha-smooth muscle actin expression in rat and mouse mesenteric wounds after transforming growth factor-beta1 treatment. Wound Repair and Regeneration, 1997, 5, 339-347.	3.0	9
58	Messenger RNA levels for genes involved in extracellular matrix from human corneal scrapings before and after Photorefractive Keratectomy. Acta Ophthalmologica, 1998, 76, 568-572.	0.3	8