Feipeng Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4179311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design of NiCo2O4 nanoparticles decorated N, S co-doped reduced graphene oxide composites for electrochemical simultaneous detection of trace multiple heavy metal ions and hydrogen evolution reaction. Chemical Engineering Journal, 2022, 433, 133854.	12.7	46
2	A novel NTC ceramic based on La2Zr2O7 for high-temperature thermistor. Journal of the European Ceramic Society, 2022, 42, 2561-2564.	5.7	9
3	Substrate-induced morphology and its effect on the electrical properties and stability of polycrystalline Mn1.2Co1.5Ni0.3O4 thin films. Journal of Materials Science: Materials in Electronics, 2021, 32, 22588-22598.	2.2	1
4	Characterization of Al-doped Mn–Co–Ni–O NTC thermistor films prepared by the magnetron co-sputtering approach. Journal of Alloys and Compounds, 2020, 831, 154831.	5.5	13
5	Effect of sintering temperature on structural and electrical properties of Mn0.55Fe1.25Cu2Ni2.2O4+δ NTC thick film. Journal of Materials Science: Materials in Electronics, 2020, 31, 12848-12855.	2.2	3
6	Effect of substrate temperature on structure, cationic distribution and electrical properties of MnCo0.2Ni0.1Mg0.6Al1.1O4 thin films. Journal of Materials Science: Materials in Electronics, 2019, 30, 14200-14206.	2.2	4
7	Improvement of Mn1.56(Co1â^'xAlx)0.96Ni0.48O4 (0.1 â‰â€‰x â‰â€‰0.4) Film Preparation and A Structure and Properties. Journal of Electronic Materials, 2019, 48, 2077-2084.	ssessment 2.2	: of Its
8	Fabrication and electrical properties of the fast response Mn1.2Co1.5Ni0.3O4 miniature NTC chip thermistors. Ceramics International, 2019, 45, 378-383.	4.8	32
9	Fabrication and properties of high B value [Mn1.56Co0.96Ni0.48O4]1â^x[SrMnO3]x (O â‰ 8 €‰x â‰8 spinel–perovskite composite NTC films. Journal of Materials Science: Materials in Electronics, 2018, 29, 9613-9620.	€‰0.5) 2.2	4
10	Influence of oxygen atmosphere annealing on the thermal stability of Mn1.2Co1.5Ni0.3O4± ceramic films fabricated by RF magnetron sputtering. Ceramics International, 2018, 44, 1455-1460.	4.8	15
11	Effect of sputtering power on structural, cationic distribution and optical properties of Mn2Zn0.25Ni0.75O4 thin films. Applied Surface Science, 2018, 435, 815-821.	6.1	27
12	High B value Mn-Co-Ni spinel films on alumina substrate by RF sputtering. Journal of Materials Science: Materials in Electronics, 2017, 28, 9876-9881.	2.2	16
13	Improvement of electrical properties of single-phase film thermistors by a Ni0.75Mn2.25O4/LaMnO3 bilayer structure. Journal of Materials Science: Materials in Electronics, 2017, 28, 3837-3842.	2.2	4
14	Oxidation mode on charge transfer mechanism in formation of Mn–Co–Ni–O spinel films by RF sputtering. Journal of Materials Science: Materials in Electronics, 2017, 28, 13659-13664.	2.2	7
15	A study on the electrical properties of Mn-Co-Ni-O thin films grown by radio frequency magnetron sputtering with different thicknesses. Applied Surface Science, 2017, 423, 1012-1018.	6.1	23
16	Formation of Mnâ€Coâ€Niâ€O Nanoceramic Microspheres Using In Situ Inkâ€Jet Printing: Sintering Process Effect on the Microstructure and Electrical Properties. Small, 2016, 12, 5027-5033.	10.0	24
17	Mn1.56Co0.96Ni0.48O4±δflexible thin films fabricated by pulsed laser deposition for NTC applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2016, 206, 39-44.	3.5	14
18	Growth mode and properties of Mn–Co–Ni–O NTC thermistor thin films deposited on MgO (100) substrate by laser MBE. Modern Physics Letters B, 2014, 28, 1450235.	1.9	3

#	Article	IF	CITATIONS
19	Effects of preferred orientation on electrical properties of Mn1.56Co0.96Ni0.48O4±δ spinel films. Materials Letters, 2014, 137, 36-40.	2.6	21
20	Epitaxial growth of Mn–Co–Ni–O thin films and thickness effects on the electrical properties. Materials Letters, 2014, 130, 127-130.	2.6	27