
P Michael Conn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4179064/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmacoperones as Novel Therapeutics for Diverse Protein Conformational Diseases. Physiological Reviews, 2018, 98, 697-725.	13.1	74
2	Drug Library Screening for the Identification of Ionophores That Correct the Mistrafficking Disorder Associated with Oxalosis Kidney Disease. SLAS Discovery, 2017, 22, 887-896.	1.4	14
3	Pharmacoperone rescue of vasopressin 2 receptor mutants reveals unexpected constitutive activity and coupling bias. PLoS ONE, 2017, 12, e0181830.	1.1	12
4	Receptor antagonism/agonism can be uncoupled from pharmacoperone activity. Molecular and Cellular Endocrinology, 2016, 434, 176-185.	1.6	11
5	Identification of Potential Pharmacoperones Capable of Rescuing the Functionality of Misfolded Vasopressin 2 Receptor Involved in Nephrogenic Diabetes Insipidus. Journal of Biomolecular Screening, 2016, 21, 824-831.	2.6	20
6	Pharmacoperones as a New Therapeutic Approach: In Vitro Identification and In vivo Validation of Bioactive Molecules. Current Drug Targets, 2016, 17, 1471-1481.	1.0	12
7	Assay strategies for identification of therapeutic leads that target protein trafficking. Trends in Pharmacological Sciences, 2015, 36, 498-505.	4.0	26
8	Measurement of Blood Volume in Adult Rhesus Macaques (Macaca mulatta). Journal of the American Association for Laboratory Animal Science, 2015, 54, 687-93.	0.6	14
9	Pharmacoperones: targeting therapeutics toward diseases caused by protein misfolding. Revista De Investigacion Clinica, 2015, 67, 15-9.	0.2	3
10	A Phenotypic High Throughput Screening Assay for the Identification of Pharmacoperones for the Gonadotropin Releasing Hormone Receptor. Assay and Drug Development Technologies, 2014, 12, 238-246.	0.6	14
11	Transitioning pharmacoperones to therapeutic use: In vivo proof-of-principle and design of high throughput screens. Pharmacological Research, 2014, 83, 38-51.	3.1	29
12	Quality Control Autophagy Degrades Soluble ERAD-Resistant Conformers of the Misfolded Membrane Protein GnRHR. Molecular Cell, 2014, 54, 166-179.	4.5	137
13	Mutations in G protein-coupled receptors that impact receptor trafficking and reproductive function. Molecular and Cellular Endocrinology, 2014, 382, 411-423.	1.6	44
14	"Pharmacoperone― What's in a word?. Pharmacological Research, 2014, 83, 1-2.	3.1	13
15	Therapeutic Rescue of Misfolded/Mistrafficked Mutants. Methods in Enzymology, 2013, 521, 3-16.	0.4	18
16	Restoration of testis function in hypogonadotropic hypogonadal mice harboring a misfolded GnRHR mutant by pharmacoperone drug therapy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21030-21035.	3.3	76
17	High-Throughput Screen for Pharmacoperones of the Vasopressin Type 2 Receptor. Journal of Biomolecular Screening, 2013, 18, 930-937.	2.6	28
18	Rescue of Misrouted GnRHR Mutants Reveals Its Constitutive Activity. Molecular Endocrinology, 2012, 26. 1179-1188.	3.7	10

P MICHAEL CONN

#	Article	IF	CITATIONS
19	Mice Harboring Gnrhr E90K, a Mutation that Causes Protein Misfolding and Hypogonadotropic Hypogonadism in Humans, Exhibit Testis Size Reduction and Ovulation Failure. Molecular Endocrinology, 2012, 26, 1847-1856.	3.7	22
20	Pharmacoperone Identification for Therapeutic Rescue of Misfolded Mutant Proteins. Frontiers in Endocrinology, 2011, 2, .	1.5	11
21	Salt Bridges Overlapping the Gonadotropin-Releasing Hormone Receptor Agonist Binding Site Reveal a Coincidence Detector for G Protein-Coupled Receptor Activation. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 430-442.	1.3	15
22	Therapeutic Rescue of Misfolded Mutants: Validation of Primary High Throughput Screens for Identification of Pharmacoperone Drugs. PLoS ONE, 2011, 6, e22784.	1.1	32
23	Salt bridge integrates GPCR activation with protein trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4454-4458.	3.3	32
24	Dominant negative effects of human follicle-stimulating hormone receptor expression-deficient mutants on wild-type receptor cell surface expression. Rescue of oligomerization-dependent defective receptor expression by using cognate decoys. Molecular and Cellular Endocrinology, 2010, 321, 112-122.	1.6	40
25	Trafficking of G-protein-coupled receptors to the plasma membrane: insights for pharmacoperone drugs. Trends in Endocrinology and Metabolism, 2010, 21, 190-197.	3.1	76
26	Conformational effects of Lys191 in the human GnRH receptor: mutagenesis and molecular dynamics simulations studies. Journal of Endocrinology, 2009, 201, 297-307.	1.2	14
27	Molecular Mechanism of Action of Pharmacoperone Rescue of Misrouted GPCR Mutants: The GnRH Receptor. Molecular Endocrinology, 2009, 23, 157-168.	3.7	49
28	Drug development and the cellular quality control system. Trends in Pharmacological Sciences, 2009, 30, 228-233.	4.0	56
29	Increased plasma membrane expression of human follicle-stimulating hormone receptor by a small molecule thienopyr(im)idine. Molecular and Cellular Endocrinology, 2009, 298, 84-88.	1.6	68
30	Trafficking and quality control of the gonadotropin releasing hormone receptor in health and disease. Molecular and Cellular Endocrinology, 2009, 299, 137-145.	1.6	51
31	G Protein-Coupled Receptor Trafficking in Health and Disease: Lessons Learned to Prepare for Therapeutic Mutant Rescue in Vivo. Pharmacological Reviews, 2007, 59, 225-250.	7.1	225
32	Refolding of misfolded mutant GPCR: Post-translational pharmacoperone action in vitro. Molecular and Cellular Endocrinology, 2007, 272, 77-85.	1.6	44
33	Protein Folding as Posttranslational Regulation: Evolution of a Mechanism for Controlled Plasma Membrane Expression of a G Protein-Coupled Receptor. Molecular Endocrinology, 2006, 20, 3035-3041.	3.7	57
34	â€~Effective inefficiency': cellular control of protein trafficking as a mechanism of post-translational regulation. Journal of Endocrinology, 2006, 190, 13-16.	1.2	42
35	Regulation of G Protein-coupled Receptor Trafficking by Inefficient Plasma Membrane Expression. Journal of Biological Chemistry, 2006, 281, 8417-8425.	1.6	68
36	Beyond the Signal Sequence: Protein Routing in Health and Disease. Endocrine Reviews, 2005, 26, 479-503.	8.9	71

P MICHAEL CONN

#	Article	IF	CITATIONS
37	Parallel Regulation of Membrane Trafficking and Dominant-negative Effects by Misrouted Gonadotropin-releasing Hormone Receptor Mutants. Journal of Biological Chemistry, 2005, 280, 24506-24514.	1.6	44
38	A Novel Mouse Model of Hypogonadotrophic Hypogonadism: N-Ethyl-N-Nitrosourea-Induced Gonadotropin-Releasing Hormone Receptor Gene Mutation. Molecular Endocrinology, 2005, 19, 972-981.	3.7	64
39	Human Loss-of-Function Gonadotropin-Releasing Hormone Receptor Mutants Retain Wild-Type Receptors in the Endoplasmic Reticulum: Molecular Basis of the Dominant-Negative Effect. Molecular Endocrinology, 2004, 18, 1787-1797.	3.7	100
40	Misrouted cell surface GnRH receptors as a disease aetiology for congenital isolated hypogonadotrophic hypogonadism. Human Reproduction Update, 2004, 10, 177-192.	5.2	47
41	Pharmacologic Rescue of Conformationally-Defective Proteins: Implications for the Treatment of Human Disease. Traffic, 2004, 5, 821-837.	1.3	241
42	Dominant-Negative Action of Disease-Causing Gonadotropin-Releasing Hormone Receptor (GnRHR) Mutants: A Trait That Potentially Coevolved with Decreased Plasma Membrane Expression of GnRHR in Humans. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 3360-3367.	1.8	86
43	Structure-Activity Relations of Successful Pharmacologic Chaperones for Rescue of Naturally Occurring and Manufactured Mutants of the Gonadotropin-Releasing Hormone Receptor. Journal of Pharmacology and Experimental Therapeutics, 2003, 305, 608-614.	1.3	131
44	Unexpected Effects of Epitope and Chimeric Tags on Gonadotropin-Releasing Hormone Receptors: Implications for Understanding the Molecular Etiology of Hypogonadotropic Hypogonadism. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 6107-6112.	1.8	50
45	Rescue of Hypogonadotropic Hypogonadism-Causing and Manufactured GnRH Receptor Mutants by a Specific Protein-Folding Template: Misrouted Proteins as a Novel Disease Etiology and Therapeutic Target. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 3255-3262.	1.8	182
46	Protein Origami: Therapeutic Rescue of Misfolded Gene Products. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2002, 2, 308-316.	3.4	58
47	Combined Modification of Intracellular and Extracellular Loci on Human Gonadotropin-Releasing Hormone Receptor Provides a Mechanism for Enhanced Expression. Endocrine, 2000, 13, 401-407.	2.2	31
48	Transcriptional Regulation of the Gonadotropin-Releasing Hormone Receptor Gene Is Mediated in Part by a Putative Repressor Element and by the Cyclic Adenosine 3′,5′-Monophosphate Response Element*. Endocrinology, 1999, 140, 3452-3458.	1.4	23
49	Gonadotropin-releasing hormone receptor concentration differentially regulates intracellular signaling pathways in GGH3 cells. Pituitary, 1999, 2, 181-190.	1.6	11
50	Molecular Cloning and Expression of Two Type One Somatostatin Receptors in Goldfish Brain. Endocrinology, 1999, 140, 5211-5219.	1.4	19
51	Transcriptional Activation of Gonadotropin-Releasing Hormone (GnRH) Receptor Gene by GnRH and Cyclic Adenosine Monophosphate. Endocrinology, 1998, 139, 3896-3902.	1.4	16
52	Regulation of Gq/11α by the Gonadotropin-Releasing Hormone Receptor. Molecular Endocrinology, 1997, 11, 738-746.	3.7	82