Jan Wienold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4178226/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras. Energy and Buildings, 2006, 38, 743-757.	6.7	650
2	The daylighting dashboard – A simulation-based design analysis for daylit spaces. Building and Environment, 2011, 46, 386-396.	6.9	219
3	Adequacy of Immersive Virtual Reality for the Perception of Daylit Spaces: Comparison of Real and Virtual Environments. LEUKOS - Journal of Illuminating Engineering Society of North America, 2019, 15, 203-226.	2.9	117
4	Cross-validation and robustness of daylight glare metrics. Lighting Research and Technology, 2019, 51, 983-1013.	2.7	87
5	Daylight affects human thermal perception. Scientific Reports, 2019, 9, 13690.	3.3	71
6	Subjective and physiological responses to façade and sunlight pattern geometry in virtual reality. Building and Environment, 2019, 150, 144-155.	6.9	68
7	Review of Factors Influencing Discomfort Glare Perception from Daylight. LEUKOS - Journal of Illuminating Engineering Society of North America, 2018, 14, 111-148.	2.9	66
8	Fener: A Radiance-based modelling approach to assess the thermal and daylighting performance of complex fenestration systems in office spaces. Energy and Buildings, 2015, 94, 10-20.	6.7	50
9	Combined effects of daylight transmitted through coloured glazing and indoor temperature on thermal responses and overall comfort. Building and Environment, 2018, 144, 583-597.	6.9	46
10	Temperature–Color Interaction: Subjective Indoor Environmental Perception and Physiological Responses in Virtual Reality. Human Factors, 2021, 63, 474-502.	3.5	32
11	Influence of indoor temperature and daylight illuminance on visual perception. Lighting Research and Technology, 2020, 52, 350-370.	2.7	31
12	Tutorial: Luminance Maps for Daylighting Studies from High Dynamic Range Photography. LEUKOS - Journal of Illuminating Engineering Society of North America, 2021, 17, 140-169.	2.9	30
13	Daylight Discomfort Glare Evaluation with Evalglare: Influence of Parameters and Methods on the Accuracy of Discomfort Glare Prediction. Buildings, 2018, 8, 94.	3.1	28
14	Novel heating and cooling concept employing rainwater cisterns and thermo-active building systems for a residential building. Applied Energy, 2010, 87, 650-660.	10.1	25
15	Discomfort glare perception in daylighting: influencing factors. Energy Procedia, 2017, 122, 331-336.	1.8	24
16	Window Size Effects on Subjective Impressions of Daylit Spaces: Indoor Studies at High Latitudes Using Virtual Reality. LEUKOS - Journal of Illuminating Engineering Society of North America, 2021, 17, 242-264.	2.9	23
17	Comparing performance of discomfort glare metrics in high and low adaptation levels. Building and Environment, 2021, 206, 108335.	6.9	23
18	Behind electrochromic glazing: Assessing user's perception of glare from the sun in a controlled environment. Energy and Buildings, 2022, 256, 111738.	6.7	21

Jan Wienold

#	Article	IF	CITATIONS
19	Effect of Indoor Temperature and Glazing with Saturated Color on Visual Perception of Daylight. LEUKOS - Journal of Illuminating Engineering Society of North America, 2021, 17, 183-204.	2.9	20
20	Characterization of indoor photovoltaic devices and light. , 2009, , .		19
21	Modeling specular transmission of complex fenestration systems with data-driven BSDFs. Building and Environment, 2021, 196, 107774.	6.9	14
22	Window View Quality: Why It Matters and What We Should Do. LEUKOS - Journal of Illuminating Engineering Society of North America, 2022, 18, 259-267.	2.9	14
23	Physical Validation of Global Illumination Methods: Measurement and Error Analysis. Computer Graphics Forum, 2004, 23, 761-781.	3.0	13
24	Gaze and discomfort glare, Part 1: Development of a gaze-driven photometry. Lighting Research and Technology, 2017, 49, 845-865.	2.7	13
25	Regional Differences in the Perception of Daylit Scenes across Europe Using Virtual Reality. Part I: Effects of Window Size. LEUKOS - Journal of Illuminating Engineering Society of North America, 2022, 18, 294-315.	2.9	12
26	Efficient Simulation for Visual Comfort Evaluations. Energy and Buildings, 2022, 267, 112141.	6.7	12
27	Subjective and physiological responses towards daylit spaces with contemporary façade patterns in virtual reality: Influence of sky type, space function, and latitude. Journal of Environmental Psychology, 2022, 82, 101839.	5.1	11
28	Is there a difference in how people from different socio-environmental contexts perceive discomfort due to glare from daylight?. Lighting Research and Technology, 2022, 54, 5-32.	2.7	7
29	Computer-oriented building design: Advances in daylighting and thermal simulation tools. Renewable Energy, 1998, 14, 351-356.	8.9	4
30	Regional Differences in the Perception of Daylit Scenes across Europe Using Virtual Reality. Part II: Effects of Façade and Daylight Pattern Geometry. LEUKOS - Journal of Illuminating Engineering Society of North America, 2022, 18, 316-340.	2.9	4
31	Energieoptimierte Beleuchtung bei gleichzeitiger Verbesserung der Lebensqualitädurch Nutzung von Tageslicht und neuer Lampen- und Vorschalttechnik. Bauphysik, 2012, 34, 85-100.	0.5	3
32	COGNITIVE PERFORMANCE EVALUATION UNDER CONTROLLED DAYLIGHT LEVELS AT DIFFERENT INDOOR TEMPERATURES. , 2019, , .		3
33	Correspondence: Discussion of â€~The cross validation and robustness of daylight glare metrics'. Lighting Research and Technology, 2020, 52, 314-317.	2.7	2
34	Subjective assessment of visual comfort in a daylit workplace with an electrochromic glazed façade. Journal of Physics: Conference Series, 2021, 2042, 012179.	0.4	2
35	Shaping light to influence occupants' experience of space: a kinetic shading system with composite materials. Journal of Physics: Conference Series, 2019, 1343, 012162.	0.4	1
36	Energy Performance And Occupancy-Based Analysis Of Visual And Thermal Comfort For Transmittance Level And Layout Variations Of Semi-Transparent Photovoltaics. , 0, , .		1

#	Article	IF	CITATIONS
37	Correspondence: Investigation of Evalglare software, daylight glare probability and high dynamic range imaging for daylight glare analysis. Lighting Research and Technology, 2018, 50, 329-330.	2.7	0
38	Environmental preferences of occupants: A multi-domain approach in the Swiss open office case study. Journal of Physics: Conference Series, 2021, 2042, 012131.	0.4	0