Rahmat Agung Susantyoko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4177667/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Smooth surface induced glossy appearance of freestanding multiwall carbon nanotube sheet. Carbon Letters, 2021, 31, 689.	5.9	1
2	The effect of varying specimens' printing angles to the bed surface on the tensile strength of 3D-printed 17-4PH stainless-steels via metal FFF additive manufacturing. MRS Communications, 2021, 11, 310-316.	1.8	23
3	Prospects and Design Insights of Neat Ionic Liquids as Supercapacitor Electrolytes. Frontiers in Energy Research, 2021, 9, .	2.3	17
4	Digital Twin Additive Reconstruction Tool for Micromechanical Modeling of 3D-Printed Parts. , 2021, ,		1
5	Investigation and Characterization of Clay Mixture Feedstock for Extrusion-Based Additive Manufacturing. , 2020, , .		0
6	MWCNT/activated-carbon freestanding sheets: a different approach to fabricate flexible electrodes for supercapacitors. Ionics, 2019, 25, 265-273.	2.4	14
7	Robust Surface-Engineered Tape-Cast and Extrusion Methods to Fabricate Electrically-Conductive Poly(vinylidene fluoride)/Carbon Nanotube Filaments for Corrosion-Resistant 3D Printing Applications. Scientific Reports, 2019, 9, 9618.	3.3	12
8	Activity of MWCNT sheets and effects of carbonaceous impurities toward the alkaline-based hydrogen evolution reaction. Ionics, 2019, 25, 4285-4294.	2.4	2
9	Nanoscopic and Macro-Porous Carbon Nano-foam Electrodes with Improved Mass Transport for Vanadium Redox Flow Batteries. Scientific Reports, 2019, 9, 17655.	3.3	19
10	Development of Surfaceâ€Engineered Tapeâ€Casting Method for Fabricating Freestanding Carbon Nanotube Sheets Containing Fe ₂ O ₃ Nanoparticles for Flexible Batteries. Advanced Engineering Materials, 2018, 20, 1701019.	3.5	16
11	Effects of carbonaceous impurities on the electrochemical activity of multiwalled carbon nanotube electrodes for vanadium redox flow batteries. Carbon, 2018, 131, 47-59.	10.3	30
12	Performance optimization of freestanding MWCNT-LiFePO ₄ sheets as cathodes for improved specific capacity of lithium-ion batteries. RSC Advances, 2018, 8, 16566-16573.	3.6	18
13	Hydrothermal synthesis of LiFePO4 micro-particles for fabrication of cathode materials based on LiFePO4/carbon nanotubes nanocomposites for Li-ion batteries. Ionics, 2018, 24, 3685-3690.	2.4	15
14	Mechanical, thermal and electrical properties of LiFePO4/MWCNTs composite electrodes. Materials Letters, 2018, 230, 57-60.	2.6	16
15	A wet-filtration-zipping approach for fabricating highly electroconductive and auxetic graphene/carbon nanotube hybrid buckypaper. Scientific Reports, 2018, 8, 12188.	3.3	24
16	Fabrication of Freestanding Sheets of Multiwalled Carbon Nanotubes (Buckypapers) for Vanadium Redox Flow Batteries and Effects of Fabrication Variables on Electrochemical Performance. Electrochimica Acta, 2017, 230, 222-235.	5.2	53
17	Synthesis of few-layer graphene-like sheets from carbon-based powders via electrochemical exfoliation, using carbon black as an example. Journal of Materials Science, 2017, 52, 11004-11013.	3.7	15
18	A surface-engineered tape-casting fabrication technique toward the commercialisation of freestanding carbon nanotube sheets. Journal of Materials Chemistry A, 2017, 5, 19255-19266.	10.3	41

#	Article	IF	CITATIONS
19	A hierarchical 3D carbon nanostructure for high areal capacity and flexible lithium ion batteries. Carbon, 2016, 98, 504-509.	10.3	45
20	Influences of annealing on lithium-ion storage performance of thick germanium film anodes. Nano Energy, 2015, 12, 521-527.	16.0	16
21	Ni–Si nanosheet network as high performance anode for Li ion batteries. Journal of Power Sources, 2015, 280, 393-396.	7.8	51
22	Highly stable and flexible Li-ion battery anodes based on TiO ₂ coated 3D carbon nanostructures. Journal of Materials Chemistry A, 2015, 3, 15394-15398.	10.3	65
23	High performance binder-free Sn coated carbon nanotube array anode. Carbon, 2015, 82, 282-287.	10.3	65
24	Sputtered nickel oxide on vertically-aligned multiwall carbon nanotube arrays for lithium-ion batteries. Carbon, 2014, 68, 619-627.	10.3	46
25	Vertically Aligned CNTâ€Supported Thick Ge Films as Highâ€Performance 3D Anodes for Lithium Ion Batteries. Small, 2014, 10, 2826-2829.	10.0	61
26	High areal capacity Li ion battery anode based on thick mesoporous Co3O4 nanosheet networks. Nano Energy, 2014, 5, 91-96.	16.0	112
27	Soft silicon anodes for lithium ion batteries. Energy and Environmental Science, 2014, 7, 2261.	30.8	70
28	Copper–silicon core–shell nanotube arrays for free-standing lithium ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 15294.	10.3	48
29	A multilayer Si/CNT coaxial nanofiber LIB anode with a high areal capacity. Energy and Environmental Science, 2014, 7, 655-661.	30.8	174
30	Stable cyclic performance of nickel oxide–carbon composite anode for lithium-ion batteries. Thin Solid Films, 2014, 558, 356-364.	1.8	17
31	Large scale low cost fabrication of diameter controllable silicon nanowire arrays. Nanotechnology, 2014, 25, 255302.	2.6	18
32	Germanium coated vertically-aligned multiwall carbon nanotubes as lithium-ion battery anodes. Carbon, 2014, 77, 551-559.	10.3	33
33	Ultrahigh volumetric capacity lithium ion battery anodes with CNT–Si film. Nano Energy, 2014, 8, 71-77.	16.0	95