Randy J Seeley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4177489/publications.pdf

Version: 2024-02-01

377 papers 42,352 citations

99 h-index 194 g-index

400 all docs 400 docs citations

400 times ranked

30056 citing authors

#	Article	IF	CITATIONS
1	Central nervous system control of food intake. Nature, 2000, 404, 661-671.	13.7	5,309
2	Identification of targets of leptin action in rat hypothalamus Journal of Clinical Investigation, 1996, 98, 1101-1106.	3.9	1,322
3	Hypothalamic mTOR Signaling Regulates Food Intake. Science, 2006, 312, 927-930.	6.0	1,111
4	Signals That Regulate Food Intake and Energy Homeostasis. Science, 1998, 280, 1378-1383.	6.0	1,063
5	Glucagon-like peptide 1 (GLP-1). Molecular Metabolism, 2019, 30, 72-130.	3.0	850
6	FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature, 2014, 509, 183-188.	13.7	810
7	Ghrelin. Molecular Metabolism, 2015, 4, 437-460.	3.0	810
8	Leptin Increases Hypothalamic Pro-opiomelanocortin mRNA Expression in the Rostral Arcuate Nucleus. Diabetes, 1997, 46, 2119-2123.	0.3	785
9	A Randomized Trial Comparing a Very Low Carbohydrate Diet and a Calorie-Restricted Low Fat Diet on Body Weight and Cardiovascular Risk Factors in Healthy Women. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 1617-1623.	1.8	724
10	Obesity and leptin resistance: distinguishing cause from effect. Trends in Endocrinology and Metabolism, 2010, 21, 643-651.	3.1	668
11	Mice lacking ghrelin receptors resist the development of diet-induced obesity. Journal of Clinical Investigation, 2005, 115, 3564-3572.	3.9	537
12	A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nature Medicine, 2015, 21, 27-36.	15.2	481
13	Joint international consensus statement for ending stigma of obesity. Nature Medicine, 2020, 26, 485-497.	15.2	468
14	Melanocortin receptors in leptin effects. Nature, 1997, 390, 349-349.	13.7	456
15	Insulin Activation of Phosphatidylinositol 3-Kinase in the Hypothalamic Arcuate Nucleus: A Key Mediator of Insulin-Induced Anorexia. Diabetes, 2003, 52, 227-231.	0.3	441
16	Obesity Pathogenesis: An Endocrine Society Scientific Statement. Endocrine Reviews, 2017, 38, 267-296.	8.9	437
17	A Controlled High-Fat Diet Induces an Obese Syndrome in Rats. Journal of Nutrition, 2003, 133, 1081-1087.	1.3	425
18	Leptin Acts via Leptin Receptor-Expressing Lateral Hypothalamic Neurons to Modulate the Mesolimbic Dopamine System and Suppress Feeding. Cell Metabolism, 2009, 10, 89-98.	7.2	370

#	Article	IF	CITATIONS
19	The Catabolic Action of Insulin in the Brain Is Mediated by Melanocortins. Journal of Neuroscience, 2002, 22, 9048-9052.	1.7	363
20	Cloned mice have an obese phenotype not transmitted to their offspring. Nature Medicine, 2002, 8, 262-267.	15.2	345
21	Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Research, 1999, 848, 114-123.	1.1	341
22	Is the Energy Homeostasis System Inherently Biased Toward Weight Gain?. Diabetes, 2003, 52, 232-238.	0.3	323
23	High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme Q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology, 2010, 52, 934-944.	3.6	311
24	Intracerebroventricular insulin enhances memory in a passive-avoidance task. Physiology and Behavior, 2000, 68, 509-514.	1.0	307
25	Food Intake and the Regulation of Body Weight. Annual Review of Psychology, 2000, 51, 255-277.	9.9	293
26	Effects of a Fixed Meal Pattern on Ghrelin Secretion: Evidence for a Learned Response Independent of Nutrient Status. Endocrinology, 2006, 147, 23-30.	1.4	293
27	Neuronal GLP1R mediates liraglutide's anorectic but not glucose-lowering effect. Journal of Clinical Investigation, 2014, 124, 2456-2463.	3.9	293
28	Insulin and the Blood-Brain Barrier. Current Pharmaceutical Design, 2003, 9, 795-800.	0.9	288
29	Arcuate Glucagon-Like Peptide 1 Receptors Regulate Glucose Homeostasis but Not Food Intake. Diabetes, 2008, 57, 2046-2054.	0.3	281
30	Glucagon-Like Peptide-1 (GLP-1) Receptors Expressed on Nerve Terminals in the Portal Vein Mediate the Effects of Endogenous GLP-1 on Glucose Tolerance in Rats. Endocrinology, 2007, 148, 4965-4973.	1.4	279
31	Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. American Journal of Physiology - Endocrinology and Metabolism, 2005, 288, E447-E453.	1.8	268
32	Weight-Independent Changes in Blood Glucose Homeostasis After Gastric Bypass or Vertical Sleeve Gastrectomy in Rats. Gastroenterology, 2011, 141, 950-958.	0.6	264
33	The Diverse Roles of Specific GLP-1 Receptors in the Control of Food Intake and the Response to Visceral Illness. Journal of Neuroscience, 2002, 22, 10470-10476.	1.7	263
34	Cooperation between brain and islet in glucose homeostasis and diabetes. Nature, 2013, 503, 59-66.	13.7	261
35	Brainstem Application of Melanocortin Receptor Ligands Produces Long-Lasting Effects on Feeding and Body Weight. Journal of Neuroscience, 1998, 18, 10128-10135.	1.7	258
36	Comparative analysis of ACTH and corticosterone sampling methods in rats. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E823-E828.	1.8	258

#	Article	IF	CITATIONS
37	All Bariatric Surgeries Are Not Created Equal: Insights from Mechanistic Comparisons. Endocrine Reviews, 2012, 33, 595-622.	8.9	258
38	Vertical Sleeve Gastrectomy Is Effective in Two Genetic Mouse Models of Glucagon-Like Peptide 1 Receptor Deficiency. Diabetes, 2013, 62, 2380-2385.	0.3	257
39	Neuroendocrine Responses to Starvation and Weight Loss. New England Journal of Medicine, 1997, 336, 1802-1811.	13.9	254
40	Intraventricular Leptin Reduces Food Intake and Body Weight of Lean Rats but Not Obese Zucker Rats. Hormone and Metabolic Research, 1996, 28, 664-668.	0.7	252
41	Long-term orexigenic effects of AgRP-(83—132) involve mechanisms other than melanocortin receptor blockade. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279, R47-R52.	0.9	241
42	Targeted estrogen delivery reverses the metabolic syndrome. Nature Medicine, 2012, 18, 1847-1856.	15.2	241
43	Insulin and Leptin as Adiposity Signals. Endocrine Reviews, 2004, 59, 267-285.	7.1	228
44	Gut-Brain Cross-Talk in Metabolic Control. Cell, 2017, 168, 758-774.	13.5	218
45	Monitoring of stored and available fuel by the CNS: implications for obesity. Nature Reviews Neuroscience, 2003, 4, 901-909.	4.9	206
46	Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia, 2014, 62, 17-25.	2.5	203
47	Adiposity signals and the control of energy homeostasis. Nutrition, 2000, 16, 894-902.	1.1	201
48	Sexual differences in the control of energy homeostasis. Frontiers in Neuroendocrinology, 2009, 30, 396-404.	2.5	198
49	Role of the CNS Melanocortin System in the Response to Overfeeding. Journal of Neuroscience, 1999, 19, 2362-2367.	1.7	194
50	CNS Glucagon-Like Peptide-1 Receptors Mediate Endocrine and Anxiety Responses to Interoceptive and Psychogenic Stressors. Journal of Neuroscience, 2003, 23, 6163-6170.	1.7	193
51	A role for central nervous system PPAR- \hat{l}^3 in the regulation of energy balance. Nature Medicine, 2011, 17, 623-626.	15.2	193
52	Fibroblast Growth Factor 21 Mediates Specific Glucagon Actions. Diabetes, 2013, 62, 1453-1463.	0.3	191
53	The Role of Gut Adaptation in the Potent Effects of Multiple Bariatric Surgeries on Obesity and Diabetes. Cell Metabolism, 2015, 21, 369-378.	7.2	189
54	Obesity and gut flora. Nature, 2006, 444, 1009-1010.	13.7	188

#	Article	IF	CITATIONS
55	Sleeve Gastrectomy Induces Loss of Weight and Fat Mass in Obese Rats, but Does Not Affect Leptin Sensitivity. Gastroenterology, 2010, 138, 2426-2436.e3.	0.6	186
56	Leptin Receptor Long-form Splice-variant Protein Expression in Neuron Cell Bodies of the Brain and Co-localization with Neuropeptide Y mRNA in the Arcuate Nucleus. Journal of Histochemistry and Cytochemistry, 1999, 47, 353-362.	1.3	181
57	The Role of Pancreatic Preproglucagon in Glucose Homeostasis in Mice. Cell Metabolism, 2017, 25, 927-934.e3.	7.2	178
58	The Role of Hypothalamic Mammalian Target of Rapamycin Complex 1 Signaling in Diet-Induced Obesity. Journal of Neuroscience, 2008, 28, 7202-7208.	1.7	175
59	Pleasurable behaviors reduce stress via brain reward pathways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20529-20534.	3.3	175
60	Obesity, diabetes and the central nervous system. Diabetologia, 1998, 41, 863-881.	2.9	174
61	A Novel Selective Melanocortin-4 Receptor Agonist Reduces Food Intake in Rats and Mice without Producing Aversive Consequences. Journal of Neuroscience, 2000, 20, 3442-3448.	1.7	174
62	GLP-1 and energy balance: an integrated model of short-term and long-term control. Nature Reviews Endocrinology, 2011, 7, 507-516.	4.3	173
63	Amylin: A Novel Action in the Brain to Reduce Body Weight*. Endocrinology, 2000, 141, 850-850.	1.4	167
64	The Role of CNS Glucagon-Like Peptide-1 (7-36) Amide Receptors in Mediating the Visceral Illness Effects of Lithium Chloride. Journal of Neuroscience, 2000, 20, 1616-1621.	1.7	163
65	Hypothalamic Melanin-Concentrating Hormone and Estrogen-Induced Weight Loss. Journal of Neuroscience, 2000, 20, 8637-8642.	1.7	160
66	Vertical sleeve gastrectomy reduces hepatic steatosis while increasing serum bile acids in a weight-loss-independent manner. Obesity, 2014, 22, 390-400.	1.5	160
67	The Integrative Role of CNS Fuel-Sensing Mechanisms in Energy Balance and Glucose Regulation. Annual Review of Physiology, 2008, 70, 513-535.	5.6	158
68	Increased expression of mRNA for the long form of the leptin receptor in the hypothalamus is associated with leptin hypersensitivity and fasting. Diabetes, 1998, 47, 538-543.	0.3	157
69	Inhibition of Central Amylin Signaling Increases Food Intake and Body Adiposity in Rats. Endocrinology, 2001, 142, 5035-5038.	1.4	152
70	Perinatal Exposure to Bisphenol-A and the Development of Metabolic Syndrome in CD-1 Mice. Endocrinology, 2010, 151, 2603-2612.	1.4	152
71	Eating Elicited by Orexin-A, But Not Melanin-Concentrating Hormone, Is Opioid Mediated. Endocrinology, 2002, 143, 2995-3000.	1.4	149
72	Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiology and Behavior, 2011, 103, 10-16.	1.0	147

#	Article	IF	Citations
73	How Strongly Does Appetite Counter Weight Loss? Quantification of the Feedback Control of Human Energy Intake. Obesity, 2016, 24, 2289-2295.	1.5	145
74	Fibroblast Growth Factor-19 Action in the Brain Reduces Food Intake and Body Weight and Improves Glucose Tolerance in Male Rats. Endocrinology, 2013, 154, 9-15.	1.4	144
75	Regulation of gastric emptying rate and its role in nutrient-induced GLP-1 secretion in rats after vertical sleeve gastrectomy. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E424-E432.	1.8	143
76	The Role of \hat{I}^2 Cell Glucagon-like Peptide-1 Signaling in Glucose Regulation and Response to Diabetes Drugs. Cell Metabolism, 2014, 19, 1050-1057.	7.2	139
77	Consumption of a high-fat diet alters the homeostatic regulation of energy balance. Physiology and Behavior, 2004, 83, 573-578.	1.0	138
78	THE CRITICAL ROLE OF THE MELANOCORTIN SYSTEM IN THE CONTROL OF ENERGY BALANCE. Annual Review of Nutrition, 2004, 24, 133-149.	4.3	137
79	Intestinal adaptation after ileal interposition surgery increases bile acid recycling and protects against obesity-related comorbidities. American Journal of Physiology - Renal Physiology, 2010, 299, G652-G660.	1.6	136
80	Hyperphagia and Increased Fat Accumulation in Two Models of Chronic CNS Glucagon-Like Peptide-1 Loss of Function. Journal of Neuroscience, 2011, 31, 3904-3913.	1.7	135
81	Enhanced AMPA Receptor Trafficking Mediates the Anorexigenic Effect of Endogenous Glucagon-like Peptide-1 in the Paraventricular Hypothalamus. Neuron, 2017, 96, 897-909.e5.	3.8	133
82	The Effects of Vertical Sleeve Gastrectomy in Rodents Are Ghrelin Independent. Gastroenterology, 2013, 144, 50-52.e5.	0.6	129
83	The effect of vertical sleeve gastrectomy on food choice in rats. International Journal of Obesity, 2013, 37, 288-295.	1.6	127
84	Signalling from the periphery to the brain that regulates energy homeostasis. Nature Reviews Neuroscience, 2018, 19, 185-196.	4.9	124
85	The Role of Energy Expenditure in the Differential Weight Loss in Obese Women on Low-Fat and Low-Carbohydrate Diets. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 1475-1482.	1.8	123
86	Regulation of Food Intake Through Hypothalamic Signaling Networks Involving mTOR. Annual Review of Nutrition, 2008, 28, 295-311.	4.3	120
87	The evaluation of insulin as a metabolic signal influencing behavior via the brain. Neuroscience and Biobehavioral Reviews, 1996, 20, 139-144.	2.9	116
88	Role of Central Nervous System Glucagon-Like Peptide-1 Receptors in Enteric Glucose Sensing. Diabetes, 2008, 57, 2603-2612.	0.3	116
89	Insulin and Leptin Combine Additively to Reduce Food Intake and Body Weight in Rats. Endocrinology, 2002, 143, 2449-2452.	1.4	115
90	A Surgical Model in Male Obese Rats Uncovers Protective Effects of Bile Acids Post-Bariatric Surgery. Endocrinology, 2013, 154, 2341-2351.	1.4	113

#	Article	IF	Citations
91	Lesions of the central nucleus of the amygdala I: Effects on taste reactivity, taste aversion learning and sodium appetite. Behavioural Brain Research, 1993, 59, 11-17.	1.2	112
92	The Role of CNS Fuel Sensing in Energy and Glucose Regulation. Gastroenterology, 2007, 132, 2158-2168.	0.6	110
93	PYY3-36 as an anti-obesity drug target. Obesity Reviews, 2005, 6, 307-322.	3.1	109
94	Synaptic plasticity in neuronal circuits regulating energy balance. Nature Neuroscience, 2012, 15, 1336-1342.	7.1	108
95	Opioid receptor involvement in the effect of AgRP- (83–132) on food intake and food selection. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R814-R821.	0.9	107
96	Diet-Induced Weight Loss Is Associated with Decreases in Plasma Serum Amyloid A and C-Reactive Protein Independent of Dietary Macronutrient Composition in Obese Subjects. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 2244-2249.	1.8	107
97	Duodenal-Jejunal Exclusion Improves Glucose Tolerance in the Diabetic, Goto-Kakizaki Rat by a GLP-1 Receptor-Mediated Mechanism. Journal of Gastrointestinal Surgery, 2009, 13, 1762-1772.	0.9	107
98	Intraventricular GLP-1 reduces short- but not long-term food intake or body weight in lean and obese rats. Brain Research, 1998, 779, 75-83.	1.1	106
99	Central infusion of melanocortin agonist MTII in rats: assessment of c-Fos expression and taste aversion. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1998, 274, R248-R254.	0.9	105
100	Low plasma leptin levels contribute to diabetic hyperphagia in rats. Diabetes, 1999, 48, 1275-1280.	0.3	104
101	Dietary sugars, not lipids, drive hypothalamic inflammation. Molecular Metabolism, 2017, 6, 897-908.	3.0	104
102	Inactivation of the cardiomyocyte glucagon-like peptide-1 receptor (GLP-1R) unmasks cardiomyocyte-independent GLP-1R-mediated cardioprotection. Molecular Metabolism, 2014, 3, 507-517.	3.0	102
103	Central Nervous System Mechanisms Linking the Consumption of Palatable High-Fat Diets to the Defense of Greater Adiposity. Cell Metabolism, 2012, 15, 137-149.	7.2	95
104	Wired on sugar: the role of the CNS in the regulation of glucose homeostasis. Nature Reviews Neuroscience, 2013, 14, 24-37.	4.9	95
105	Effect of Growth Hormone on Susceptibility to Diet-Induced Obesity. Endocrinology, 2006, 147, 2801-2808.	1.4	93
106	The Physiology and Molecular Underpinnings of the Effects of Bariatric Surgery on Obesity and Diabetes. Annual Review of Physiology, 2017, 79, 313-334.	5.6	91
107	The Hypothalamic Glucagon-Like Peptide 1 Receptor Is Sufficient but Not Necessary for the Regulation of Energy Balance and Glucose Homeostasis in Mice. Diabetes, 2017, 66, 372-384.	0.3	91
108	Sleeve Gastrectomy in Rats Improves Postprandial Lipid Clearance by Reducing Intestinal Triglyceride Secretion. Gastroenterology, 2011, 141, 939-949.e4.	0.6	89

#	Article	IF	CITATIONS
109	Targeting the CNS to treat type 2 diabetes. Nature Reviews Drug Discovery, 2009, 8, 386-398.	21.5	87
110	Meal-Anticipatory Glucagon-Like Peptide-1 Secretion in Rats. Endocrinology, 2010, 151, 569-575.	1.4	86
111	Comparison of Central and Peripheral Administration of C75 on Food Intake, Body Weight, and Conditioned Taste Aversion. Diabetes, 2002, 51, 3196-3201.	0.3	85
112	Liraglutide Modulates Appetite and Body Weight Through Glucagon-Like Peptide 1 Receptor–Expressing Glutamatergic Neurons. Diabetes, 2018, 67, 1538-1548.	0.3	84
113	Mice lacking the syndecan-3 gene are resistant to diet-induced obesity. Journal of Clinical Investigation, 2004, 114, 1354-1360.	3.9	84
114	CNS Melanocortin System Involvement in the Regulation of Food Intake. Hormones and Behavior, 2000, 37, 299-305.	1.0	83
115	Mechanisms of oleoylethanolamide-induced changes in feeding behavior and motor activity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 289, R729-R737.	0.9	83
116	The Role of Central Glucagon-Like Peptide-1 in Mediating the Effects of Visceral Illness: Differential Effects in Rats and Mice. Endocrinology, 2005, 146, 458-462.	1.4	83
117	The role of GM-CSF in adipose tissue inflammation. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E1038-E1046.	1.8	83
118	Does bariatric surgery improve adipose tissue function?. Obesity Reviews, 2016, 17, 795-809.	3.1	81
119	The New Biology of Body Weight Regulation. Journal of the American Dietetic Association, 1997, 97, 54-58.	1.3	79
120	Central infusion of glucagon-like peptide-1-(7–36) amide (GLP-1) receptor antagonist attenuates lithium chloride-induced c-Fos induction in rat brainstem. Brain Research, 1998, 801, 164-170.	1.1	79
121	Violet-light suppression of thermogenesis by opsin 5 hypothalamic neurons. Nature, 2020, 585, 420-425.	13.7	78
122	Visceral abdominal fat is correlated with whole-body fat and physical activity among 8-y-old children at risk of obesity. American Journal of Clinical Nutrition, 2007, 85, 46-53.	2.2	77
123	NPY and food intake: Discrepancies in the model. Regulatory Peptides, 1998, 75-76, 403-408.	1.9	76
124	Fasting and postprandial concentrations of GLP-1 in intestinal lymph and portal plasma: evidence for selective release of GLP-1 in the lymph system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R2163-R2169.	0.9	76
125	Loss of Cytokine-STAT5 Signaling in the CNS and Pituitary Gland Alters Energy Balance and Leads to Obesity. PLoS ONE, 2008, 3, e1639.	1.1	75
126	Immediate and Prolonged Patterns of Agouti-Related Peptide-(83–132)-Induced c-Fos Activation in Hypothalamic and Extrahypothalamic Sites*. Endocrinology, 2001, 142, 1050-1056.	1.4	74

#	Article	IF	CITATIONS
127	The Effect of Angiotensin-Converting Enzyme Inhibition Using Captopril on Energy Balance and Glucose Homeostasis. Endocrinology, 2009, 150, 4114-4123.	1.4	74
128	The effect of fat removal on glucose tolerance is depot specific in male and female mice. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E1012-E1020.	1.8	73
129	Complex Regulation of Mammalian Target of Rapamycin Complex 1 in the Basomedial Hypothalamus by Leptin and Nutritional Status. Endocrinology, 2009, 150, 4541-4551.	1.4	73
130	Targeting FXR and FGF19 to Treat Metabolic Diseasesâ€"Lessons Learned From Bariatric Surgery. Diabetes, 2018, 67, 1720-1728.	0.3	72
131	How diabetes went to our heads. Nature Medicine, 2006, 12, 47-49.	15.2	71
132	C75 inhibits food intake by increasing CNS glucose metabolism. Nature Medicine, 2003, 9, 483-485.	15.2	70
133	Sexually different actions of leptin in proopiomelanocortin neurons to regulate glucose homeostasis. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E630-E639.	1.8	70
134	Gastric Bypass Surgery Attenuates Ethanol Consumption in Ethanol-Preferring Rats. Biological Psychiatry, 2012, 72, 354-360.	0.7	70
135	Angiotensin Type 1a Receptors in the Paraventricular Nucleus of the Hypothalamus Protect against Diet-Induced Obesity. Journal of Neuroscience, 2013, 33, 4825-4833.	1.7	70
136	Ciliary Neurotrophic Factor and Leptin Induce Distinct Patterns of Immediate Early Gene Expression in the Brain. Diabetes, 2004, 53, 911-920.	0.3	69
137	Pharmacological but not physiological GDF15 suppresses feeding and the motivation to exercise. Nature Communications, 2021, 12, 1041.	5.8	69
138	Effect of vertical sleeve gastrectomy on food selection and satiation in rats. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E1076-E1084.	1.8	68
139	Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the Non-aversive Suppression of Feeding. Cell Metabolism, 2020, 31, 301-312.e5.	7.2	68
140	Expression of New Loci Associated With Obesity in Dietâ€Induced Obese Rats: From Genetics to Physiology. Obesity, 2012, 20, 306-312.	1.5	67
141	Integration of Satiety Signals by the Central Nervous System. Current Biology, 2013, 23, R379-R388.	1.8	67
142	GM-CSF action in the CNS decreases food intake and body weight. Journal of Clinical Investigation, 2005, 115, 3035-3044.	3.9	67
143	Intestinal satiety protein apolipoprotein AIV is synthesized and regulated in rat hypothalamus. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 280, R1382-R1387.	0.9	66
144	Subcutaneous adipose tissue transplantation in diet-induced obese mice attenuates metabolic dysregulation while removal exacerbates it. Physiological Reports, 2013, 1 , .	0.7	66

#	Article	IF	CITATIONS
145	Molecular Integration of Incretin and Glucocorticoid Action Reverses Immunometabolic Dysfunction and Obesity. Cell Metabolism, 2017, 26, 620-632.e6.	7.2	66
146	A comparison between effects of intraventricular insulin and intraperitoneal lithium chloride on three measures sensitive to emetic agents Behavioral Neuroscience, 1995, 109, 547-550.	0.6	65
147	Distinct Neural Sites of GLP-1R Expression Mediate Physiological versus Pharmacological Control of Incretin Action. Cell Reports, 2019, 27, 3371-3384.e3.	2.9	64
148	Similar effects of roux-en-Y gastric bypass and vertical sleeve gastrectomy on glucose regulation in rats. Physiology and Behavior, 2011, 105, 120-123.	1.0	63
149	The autonomic nervous system and cardiac GLP-1 receptors control heart rate in mice. Molecular Metabolism, 2017, 6, 1339-1349.	3.0	63
150	GDF15 acts synergistically with liraglutide but is not necessary for the weight loss induced by bariatric surgery in mice. Molecular Metabolism, 2019, 21, 13-21.	3.0	63
151	Central angiotensin II has catabolic action at white and brown adipose tissue. American Journal of Physiology - Endocrinology and Metabolism, 2011, 301, E1081-E1091.	1.8	62
152	Intraventricular insulin enhances the meal-suppressive efficacy of intraventricular cholecystokinin octapeptide in the baboon Behavioral Neuroscience, 1995, 109, 567-569.	0.6	61
153	Thermoneutral housing is a critical factor for immune function and diet-induced obesity in C57BL/6 nude mice. International Journal of Obesity, 2015, 39, 791-797.	1.6	61
154	Reg3 Proteins as Gut Hormones?. Endocrinology, 2019, 160, 1506-1514.	1.4	61
155	Neurological dissociation of gastrointestinal and metabolic contributions to meal size control Behavioral Neuroscience, 1994, 108, 347-352.	0.6	60
156	Forebrain contribution to the induction of a cellular correlate of conditioned taste aversion in the nucleus of the solitary tract. Journal of Neuroscience, 1995, 15, 6789-6796.	1.7	60
157	Food Intakeâ€independent Effects of CB1 Antagonism on Glucose and Lipid Metabolism. Obesity, 2009, 17, 1641-1645.	1.5	60
158	Roux-en-Y Gastric Bypass Surgery But Not Vertical Sleeve Gastrectomy Decreases Bone Mass in Male Rats. Endocrinology, 2013, 154, 2015-2024.	1.4	60
159	Intraventricular melanin-concentrating hormone stimulates water intake independent of food intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R494-R499.	0.9	59
160	Oral l-Arginine Stimulates GLP-1 Secretion to Improve Glucose Tolerance in Male Mice. Endocrinology, 2013, 154, 3978-3983.	1.4	58
161	Impaired glucose tolerance in rats fed low-carbohydrate, high-fat diets. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E1059-E1070.	1.8	58
162	Effect of a high-fat diet on food intake and hypothalamic neuropeptide gene expression in streptozotocin diabetes Journal of Clinical Investigation, 1998, 102, 340-346.	3.9	58

#	Article	IF	Citations
163	Lesions of the central nucleus of the amygdala II: Effects on intraoral NaCl intake. Behavioural Brain Research, 1993, 59, 19-25.	1.2	57
164	Differences in the Central Anorectic Effects of Glucagon-Like Peptide-1 and Exendin-4 in Rats. Diabetes, 2009, 58, 2820-2827.	0.3	57
165	Increased Dietary Fat Attenuates the Anorexic Effects of Intracerebroventricular Injections of MTII. Endocrinology, 2003, 144, 2941-2946.	1.4	56
166	Sexually dimorphic responses to fat loss after caloric restriction or surgical lipectomy. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E316-E326.	1.8	56
167	Inhibition of Central Amylin Signaling Increases Food Intake and Body Adiposity in Rats. , 0, .		56
168	Amylin and Insulin Interact to Reduce Food Intake in Rats. Hormone and Metabolic Research, 2000, 32, 62-65.	0.7	55
169	Syndecanâ€3 Modulates Food Intake by Interacting with the Melanocortin/AgRP Pathway. Annals of the New York Academy of Sciences, 2003, 994, 66-73.	1.8	55
170	Acute 3rd-ventricular amylin infusion potently reduces food intake but does not produce aversive consequences. Peptides, 2002, 23, 985-988.	1.2	54
171	Improved Rodent Maternal Metabolism But Reduced Intrauterine Growth After Vertical Sleeve Gastrectomy. Science Translational Medicine, 2013, 5, 199ra112.	5.8	54
172	Mechanisms underlying weight loss and metabolic improvements in rodent models of bariatric surgery. Diabetologia, 2015, 58, 211-220.	2.9	54
173	Eating Elicited by Orexin-A, But Not Melanin-Concentrating Hormone, Is Opioid Mediated. , 0, .		54
174	High-fat-diet-induced obesity causes an inflammatory and tumor-promoting microenvironment in the rat kidney. DMM Disease Models and Mechanisms, 2012, 5, 627-35.	1.2	53
175	Disruption of Glucagon-Like Peptide 1 Signaling in <i>Sim1</i> Neurons Reduces Physiological and Behavioral Reactivity to Acute and Chronic Stress. Journal of Neuroscience, 2017, 37, 184-193.	1.7	53
176	Leveraging the Gut to Treat Metabolic Disease. Cell Metabolism, 2020, 31, 679-698.	7.2	53
177	Adaptive Thermogenesis in Mice Is Enhanced by Opsin 3-Dependent Adipocyte Light Sensing. Cell Reports, 2020, 30, 672-686.e8.	2.9	53
178	Fatty Acid Synthase Inhibitors Modulate Energy Balance via Mammalian Target of Rapamycin Complex 1 Signaling in the Central Nervous System. Diabetes, 2008, 57, 3231-3238.	0.3	52
179	Peptide Designed to Elicit Apoptosis in Adipose Tissue Endothelium Reduces Food Intake and Body Weight. Diabetes, 2010, 59, 907-915.	0.3	52
180	Leptin in Energy Balance and Reward: Two Faces of the Same Coin?. Neuron, 2006, 51, 678-680.	3.8	51

#	Article	IF	CITATIONS
181	Adrenalectomy Increases Sensitivity to Central Insulin. Physiology and Behavior, 1997, 62, 631-634.	1.0	50
182	The gut microbiota regulates hypothalamic inflammation and leptin sensitivity in Western diet-fed mice via a GLP-1R-dependent mechanism. Cell Reports, 2021, 35, 109163.	2.9	50
183	Removal of intra-abdominal visceral adipose tissue improves glucose tolerance in rats: Role of hepatic triglyceride storage. Physiology and Behavior, 2011, 104, 845-854.	1.0	49
184	GFRAL-expressing neurons suppress food intake via aversive pathways. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	3.3	48
185	Adrenalectomy Alters the Sensitivity of the Central Nervous System Melanocortin System. Diabetes, 2003, 52, 2928-2934.	0.3	47
186	Reversal of Diet-Induced Obesity Increases Insulin Transport into Cerebrospinal Fluid and Restores Sensitivity to the Anorexic Action of Central Insulin in Male Rats. Endocrinology, 2013, 154, 1047-1054.	1.4	47
187	Central & Deripheral glucagon-like peptide-1 receptor signaling differentially regulate addictive behaviors. Physiology and Behavior, 2016, 161, 140-144.	1.0	47
188	Effect of leptin on intestinal apolipoprotein AIV in response to lipid feeding. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2001, 281, R753-R759.	0.9	46
189	The roles of leptin receptors on POMC neurons in the regulation of sex-specific energy homeostasis. Physiology and Behavior, 2010, 100, 165-172.	1.0	46
190	Duodenal nutrient exclusion improves metabolic syndrome and stimulates villus hyperplasia. Gut, 2014, 63, 1238-1246.	6.1	46
191	Response of neuropeptide Y-deficient mice to feeding effectors. Regulatory Peptides, 1998, 75-76, 383-389.	1.9	45
192	The role of small heterodimer partner in nonalcoholic fatty liver disease improvement after sleeve gastrectomy in mice. Obesity, 2014, 22, 2301-2311.	1.5	45
193	Hypothalamic Vitamin D Improves Glucose Homeostasis and Reduces Weight. Diabetes, 2016, 65, 2732-2741.	0.3	45
194	Daily caloric intake in intact and chronic decerebrate rats Behavioral Neuroscience, 1993, 107, 876-881.	0.6	44
195	Regulation of energy homeostasis by peripheral signals. Best Practice and Research in Clinical Endocrinology and Metabolism, 2004, 18, 497-515.	2.2	44
196	Dietâ€induced Obese Mice Are Leptin Insufficient After Weight Reduction. Obesity, 2009, 17, 1702-1709.	1.5	44
197	Food as a Hormone. Science, 2013, 339, 918-919.	6.0	44
198	Leptin receptor–expressing nucleus tractus solitarius neurons suppress food intake independently of GLP1 in mice. JCI Insight, 2020, 5, .	2.3	44

#	Article	IF	Citations
199	Mice with chronically increased circulating ghrelin develop age-related glucose intolerance. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E752-E760.	1.8	43
200	Transplantation of non-visceral fat to the visceral cavity improves glucose tolerance in mice: investigation of hepatic lipids and insulin sensitivity. Diabetologia, 2011, 54, 2890-2899.	2.9	43
201	High Fat Diet Alters Lactation Outcomes: Possible Involvement of Inflammatory and Serotonergic Pathways. PLoS ONE, 2012, 7, e32598.	1.1	43
202	Mice as experimental models for human physiology: when several degrees in housing temperature matter. Nature Metabolism, 2021, 3, 443-445.	5.1	43
203	Central leptin stimulates corticosterone secretion at the onset of the dark phase. Diabetes, 1997, 46, 1911-1914.	0.3	43
204	Fuel sensing and the central nervous system (CNS): implications for the regulation of energy balance and the treatment for obesity. Obesity Reviews, 2005, 6, 259-265.	3.1	42
205	Could the mechanisms of bariatric surgery hold the key for novel therapies?: report from a Pennington Scientific Symposium. Obesity Reviews, 2011, 12, 984-994.	3.1	41
206	Effect of vertical sleeve gastrectomy in melanocortin receptor 4-deficient rats. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E103-E110.	1.8	41
207	Improvements in hippocampal-dependent memory and microglial infiltration with calorie restriction and gastric bypass surgery, but not with vertical sleeve gastrectomy. International Journal of Obesity, 2014, 38, 349-356.	1.6	41
208	Biologic Responses to Weight Loss and Weight Regain: Report From an American Diabetes Association Research Symposium. Diabetes, 2015, 64, 2299-2309.	0.3	41
209	Role of central glucagon-like peptide-1 in hypothalamo-pituitary-adrenocortical facilitation following chronic stress. Experimental Neurology, 2008, 210, 458-466.	2.0	40
210	GLP-1R Responsiveness Predicts Individual Gastric Bypass Efficacy on Glucose Tolerance in Rats. Diabetes, 2014, 63, 505-513.	0.3	40
211	The role of previous exposure in the appetitive and consummatory effects of orexigenic neuropeptides. Peptides, 2005, 26, 751-757.	1.2	39
212	Identification of optimal reference genes for RT-qPCR in the rat hypothalamus and intestine for the study of obesity. International Journal of Obesity, 2014, 38, 192-197.	1.6	39
213	New ways in which GLP-1 can regulate glucose homeostasis. Journal of Clinical Investigation, 2005, 115, 3406-3408.	3.9	39
214	FGF21 is not required for glucose homeostasis, ketosis or tumour suppression associated with ketogenic diets in mice. Diabetologia, 2015, 58, 2414-2423.	2.9	37
215	Cerebrospinal Fluid and Plasma Leptin Measurements: Covariability with Dopamine and Cortisol in Fasting Humans. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 3579-3585.	1.8	36
216	Obesity induced by a high-fat diet downregulates apolipoprotein A-IV gene expression in rat hypothalamus. American Journal of Physiology - Endocrinology and Metabolism, 2004, 287, E366-E370.	1.8	35

#	Article	IF	CITATIONS
217	Weight loss through smoking. Nature, 2011, 475, 176-177.	13.7	35
218	Roux en Y Gastric Bypass Increases Ethanol Intake in the Rat. Obesity Surgery, 2013, 23, 920-930.	1.1	35
219	Effect of Guanylate Cyclase-C Activity on Energy and Glucose Homeostasis. Diabetes, 2014, 63, 3798-3804.	0.3	34
220	Glucagon-Like Peptide-1 Receptor Agonist Treatment Does Not Reduce Abuse-Related Effects of Opioid Drugs. ENeuro, 2019, 6, ENEURO.0443-18.2019.	0.9	34
221	Transplantation or removal of intra-abdominal adipose tissue prevents age-induced glucose insensitivity. Physiology and Behavior, 2010, 101, 282-288.	1.0	33
222	NPY-induced overfeeding suppresses hypothalamic NPY mRNA expression: potential roles of plasma insulin and leptin. Regulatory Peptides, 1998, 75-76, 425-431.	1.9	32
223	Increased adipose tissue hypoxia and capacity for angiogenesis and inflammation in young diet-sensitive C57 mice compared with diet-resistant FVB mice. International Journal of Obesity, 2013, 37, 853-860.	1.6	32
224	High-fat diet changes the temporal profile of GLP-1 receptor-mediated hypophagia in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R68-R77.	0.9	32
225	Loss of melanocortin-4 receptor function attenuates HPA responses to psychological stress. Psychoneuroendocrinology, 2014, 42, 98-105.	1.3	32
226	Adipocyte glucocorticoid receptors mediate fat-to-brain signaling. Psychoneuroendocrinology, 2015, 56, 110-119.	1.3	32
227	G-CSF partially mediates effects of sleeve gastrectomy on the bone marrow niche. Journal of Clinical Investigation, 2019, 129, 2404-2416.	3.9	32
228	The role of the gut hormone GLP-1 in the metabolic improvements caused by ileal transposition. Journal of Surgical Research, 2012, 178, 33-39.	0.8	31
229	Specific subpopulations of hypothalamic leptin receptor-expressing neurons mediate the effects of early developmental leptin receptor deletion on energy balance. Molecular Metabolism, 2018, 14, 130-138.	3.0	31
230	Immediate and Prolonged Patterns of Agouti-Related Peptide-(83 \hat{a} \in "132)-Induced c-Fos Activation in Hypothalamic and Extrahypothalamic Sites. , 0, .		31
231	Learned Meal Initiation Attenuates the Anorexic Effects of the Melanocortin Agonist MTII. Diabetes, 2003, 52, 2684-2688.	0.3	30
232	Central Nervous System GLP-1 Receptors Regulate Islet Hormone Secretion and Glucose Homeostasis in Male Rats. Endocrinology, 2017, 158, 2124-2133.	1.4	30
233	Enhanced Glucose Control Following Vertical Sleeve Gastrectomy Does Not Require a \hat{l}^2 -Cell Glucagon-Like Peptide 1 Receptor. Diabetes, 2018, 67, 1504-1511.	0.3	30
234	Bypassing the Duodenum Does Not Improve Insulin Resistance Associated With Dietâ€Induced Obesity in Rodents. Obesity, 2011, 19, 380-387.	1.5	29

#	Article	IF	CITATIONS
235	Weight loss independent changes in adipose tissue macrophage and T cell populations after sleeve gastrectomy in mice. Molecular Metabolism, 2017, 6, 317-326.	3.0	29
236	The effects of GLP-1 infusion in the hepatic portal region on food intake. Regulatory Peptides, 2009, 155, 110-114.	1.9	28
237	Vertical Sleeve Gastrectomy Restores Glucose Homeostasis in Apolipoprotein A-IV KO Mice. Diabetes, 2015, 64, 498-507.	0.3	28
238	Dietary Manipulations That Induce Ketosis Activate the HPA Axis in Male Rats and Mice: A Potential Role for Fibroblast Growth Factor-21. Endocrinology, 2018, 159, 400-413.	1.4	28
239	High-fat diet induced adiposity in mice with targeted disruption of the dopamine-3 receptor gene. Behavioural Brain Research, 2004, 151, 313-319.	1.2	27
240	Apolipoprotein A-IV interacts synergistically with melanocortins to reduce food intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R202-R207.	0.9	27
241	Weight loss by calorie restriction versus bariatric surgery differentially regulates the hypothalamo-pituitary-adrenocortical axis in male rats. Stress, 2014, 17, 484-493.	0.8	27
242	Bile Acid Signaling: Mechanism for Bariatric Surgery, Cure for NASH?. Digestive Diseases, 2015, 33, 440-446.	0.8	27
243	Insulin Detemir Is Transported From Blood to Cerebrospinal Fluid and Has Prolonged Central Anorectic Action Relative to NPH Insulin. Diabetes, 2015, 64, 2457-2466.	0.3	27
244	Endocrine regulation of food intake and body weight. Translational Research, 1996, 127, 328-332.	2.4	26
245	Neuropeptide Y and lipid increase apolipoprotein AIV gene expression in rat hypothalamus. Brain Research, 2003, 971, 232-238.	1.1	26
246	Expression of biologically active rat apolipoprotein AIV in Escherichia coli. Physiology and Behavior, 2003, 78, 149-155.	1.0	26
247	The Effect of the Melanocortin Agonist, MT-II, on the Defended Level of Body Adiposity. Endocrinology, 2005, 146, 3732-3738.	1.4	26
248	Effect of occluding the pylorus on intraoral intake: A test of the gastric hypothesis of meal termination. Physiology and Behavior, 1995, 58, 245-249.	1.0	25
249	Central Nervous System Nutrient Signaling: The Regulation of Energy Balance and the Future of Dietary Therapies. Annual Review of Nutrition, 2010, 30, 219-235.	4.3	25
250	Physiological Responses to Acute Psychological Stress Are Reduced by the PPARÎ ³ Agonist Rosiglitazone. Endocrinology, 2012, 153, 1279-1287.	1.4	25
251	Suppression of Food Intake by Glucagon-Like Peptide-1 Receptor Agonists: Relative Potencies and Role of Dipeptidyl Peptidase-4. Endocrinology, 2012, 153, 5735-5745.	1.4	25
252	The role of the transcription factor ETV5 in insulin exocytosis. Diabetologia, 2014, 57, 383-391.	2.9	25

#	Article	IF	CITATIONS
253	A leptin-regulated circuit controls glucose mobilization during noxious stimuli. Journal of Clinical Investigation, 2017, 127, 3103-3113.	3.9	25
254	Diet-induced obesity exacerbates metabolic and behavioral effects of polycystic ovary syndrome in a rodent model. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E1076-E1084.	1.8	24
255	Uroguanylin: how the gut got another satiety hormone. Journal of Clinical Investigation, 2011, 121, 3384-3386.	3.9	24
256	Effects of Food Deprivation on Conditioned Taste Aversions in Rats. Pharmacology Biochemistry and Behavior, 1998, 60, 459-466.	1.3	23
257	Efficacy of increasing physical activity to reduce children's visceral fat: A pilot randomized controlled trial. Pediatric Obesity, 2011, 6, 102-112.	3.2	23
258	The Anorectic Effect of GLP-1 in Rats Is Nutrient Dependent. PLoS ONE, 2012, 7, e51870.	1.1	23
259	Impact of intestinal electrical stimulation on nutrientâ€induced <scp>GLP</scp> â€1 secretion <i>in vivo</i> . Neurogastroenterology and Motility, 2013, 25, 700.	1.6	23
260	Metabolic effects of bariatric surgery in mouse models of circadian disruption. International Journal of Obesity, 2015, 39, 1310-1318.	1.6	23
261	The glucagon-like peptide-1 receptor in the ventromedial hypothalamus reduces short-term food intake in male mice by regulating nutrient sensor activity. American Journal of Physiology - Endocrinology and Metabolism, 2017, 313, E651-E662.	1.8	23
262	Metabolic comparison of one-anastomosis gastric bypass, single-anastomosis duodenal-switch, Roux-en-Y gastric bypass, and vertical sleeve gastrectomy in rat. Surgery for Obesity and Related Diseases, 2018, 14, 1857-1867.	1.0	23
263	Glycemic effect of pancreatic preproglucagon in mouse sleeve gastrectomy. JCI Insight, 2019, 4, .	2.3	23
264	Differential importance of endothelial and hematopoietic cell GLP-1Rs for cardiometabolic versus hepatic actions of semaglutide. JCI Insight, 2021, 6, .	2.3	23
265	The Effect of Adrenalectomy on Ghrelin Secretion and Orexigenic Action. Journal of Neuroendocrinology, 2005, 17, 445-451.	1.2	22
266	Neuropeptide Y prepares rats for scheduled feeding. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2005, 288, R1606-R1611.	0.9	22
267	The Hunger Games. Cell, 2015, 160, 805-806.	13.5	22
268	Ethanol consumption in mice with a targeted disruption of the dopamine-3 receptor gene. Addiction Biology, 2003, 8, 295-303.	1.4	21
269	The Microbes Made Me Eat It. Science, 2010, 328, 179-180.	6.0	21
270	GLP-2 receptor signaling controls circulating bile acid levels but not glucose homeostasis in Gcgr mice and is dispensable for the metabolic benefits ensuing after vertical sleeve gastrectomy. Molecular Metabolism, 2018, 16, 45-54.	3.0	21

#	Article	IF	Citations
271	Glucose-sensing glucagon-like peptide-1 receptor neurons in the dorsomedial hypothalamus regulate glucose metabolism. Science Advances, 2022, 8, .	4.7	21
272	Rapid and Weight-Independent Improvement of Glucose Tolerance Induced by a Peptide Designed to Elicit Apoptosis in Adipose Tissue Endothelium. Diabetes, 2012, 61, 2299-2310.	0.3	20
273	Metabolic, gastrointestinal, and CNS neuropeptide effects of brain leptin administration in the rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R1425-R1433.	0.9	19
274	GLP-1R Agonism Enhances Adjustable Gastric Banding in Diet-Induced Obese Rats. Diabetes, 2013, 62, 3261-3267.	0.3	19
275	Differences in acute anorectic effects of long-acting GLP-1 receptor agonists in rats. Peptides, 2014, 58, 1-6.	1.2	19
276	Intestinal-derived FGF15 protects against deleterious effects of vertical sleeve gastrectomy in mice. Nature Communications, 2021, 12, 4768.	5.8	19
277	Intraventricular neuropeptide Y decreases need-induced sodium appetite and increases pica in rats Behavioral Neuroscience, 1999, 113, 826-832.	0.6	18
278	Principles for interpreting interactions among the multiple systems that influence food intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R46-R53.	0.9	18
279	Moderate voluntary exercise attenuates the metabolic syndrome in melanocortin-4 receptor-deficient rats showing central dopaminergic dysregulation. Molecular Metabolism, 2015, 4, 692-705.	3.0	18
280	Bariatric surgery emphasizes biological sex differences in rodent hepatic lipid handling. Biology of Sex Differences, 2017, 8, 4.	1.8	18
281	Effects of Interrupting an Intraoral Meal on Meal Size and Meal Duration in Rats. Appetite, 1993, 20, 13-20.	1.8	17
282	Discriminative cues produced by NPY do not generalize to the interoceptive cues produced by food deprivation. Physiology and Behavior, 1995, 58, 1237-1241.	1.0	17
283	Nitrous Oxide-Induced Hypothermia in the Rat. Pharmacology Biochemistry and Behavior, 1999, 62, 189-196.	1.3	17
284	Activity of body energy regulatory pathways in inflammation-induced anorexia. Physiology and Behavior, 2001, 73, 517-523.	1.0	17
285	Differential Effects of Adrenalectomy on Melanin-Concentrating Hormone and Orexin A. Endocrinology, 2004, 145, 3404-3412.	1.4	17
286	A BAFF/APRIL axis regulates obesogenic diet-driven weight gain. Nature Communications, 2021, 12, 2911.	5.8	17
287	Ingestive homeostasis: The primacy of learning , 0, , 11-27.		16
288	The Regulation of Energy Balance by the Central Nervous System. Psychiatric Clinics of North America, 2005, 28, 25-38.	0.7	16

#	Article	IF	Citations
289	Alcohol Drinking in MCH Receptor-1-Deficient Mice. Alcoholism: Clinical and Experimental Research, 2007, 31, 1325-1337.	1.4	16
290	The search for mechanisms underlying bariatric surgery. Nature Reviews Endocrinology, 2013, 9, 572-574.	4.3	16
291	Recombinant Incretin-Secreting Microbe Improves Metabolic Dysfunction in High-Fat Diet Fed Rodents. Scientific Reports, 2017, 7, 13523.	1.6	16
292	Neonatal GLP1R activation limits adult adiposity by durably altering hypothalamic architecture. Molecular Metabolism, 2017, 6, 748-759.	3.0	16
293	A behavioral probe of the growth of intake potential during the inter-meal interval in the rat Behavioral Neuroscience, 1994, 108, 353-361.	0.6	15
294	The Regulation of Energy Balance. Current Directions in Psychological Science, 1997, 6, 39-44.	2.8	15
295	Metabolic, Behavioral, and Reproductive Effects of Vertical Sleeve Gastrectomy in an Obese Rat Model of Polycystic Ovary Syndrome. Obesity Surgery, 2014, 24, 866-876.	1.1	15
296	Learned tolerance to the corticosterone-increasing action of ethanol in rats. Pharmacology Biochemistry and Behavior, 1996, 55, 269-273.	1.3	14
297	Assessment of the aversive consequences of acute and chronic administration of the melanocortin agonist, MTII. International Journal of Obesity, 2003, 27, 550-556.	1.6	14
298	Altered feeding responses in mice with targeted disruption of the dopamine-3 receptor gene Behavioral Neuroscience, 2003, 117, 46-54.	0.6	14
299	Treating Obesity Like a Tumor. Cell Metabolism, 2012, 15, 1-2.	7.2	14
300	The role of GIP and pancreatic GLP-1 in the glucoregulatory effect of DPP-4 inhibition in mice. Diabetologia, 2019, 62, 1928-1937.	2.9	14
301	The role of the hypothalamic melanocortin system in behavioral appetitive processes. Pharmacology Biochemistry and Behavior, 2001, 69, 603-609.	1.3	13
302	Angiotensin-converting enzyme inhibition reduces food intake and weight gain and improves glucose tolerance in melanocortin-4 receptor deficient female rats. Physiology and Behavior, 2013, 121, 43-48.	1.0	13
303	The role of proximal versus distal stomach resection in the weight loss seen after vertical sleeve gastrectomy. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R979-R987.	0.9	13
304	The Unconventional Role for Gastric Volume in the Response to Bariatric Surgery for Both Weight Loss and Glucose Lowering. Annals of Surgery, 2020, 271, 1102-1109.	2.1	13
305	Bromocriptine improves glucose tolerance independent of circadian timing, prolactin, or the melanocortin-4 receptor. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E62-E71.	1.8	13
306	The Role of Elevated Branched-Chain Amino Acids in the Effects of Vertical Sleeve Gastrectomy to Reduce Weight and Improve Glucose Regulation. Cell Reports, 2020, 33, 108239.	2.9	13

#	Article	IF	Citations
307	High-throughput mediation analysis of human proteome and metabolome identifies mediators of post-bariatric surgical diabetes control. Nature Communications, 2021, 12, 6951.	5.8	13
308	Two novel paradigms for the simultaneous assessment of conditioned taste aversion and food intake effects of anorexic agents. Physiology and Behavior, 2003, 79, 761-766.	1.0	12
309	Fat hormones pull their weight in the CNS. Nature Medicine, 2004, 10, 454-455.	15.2	12
310	Chronic food restriction and reduced dietary fat: Risk factors for bouts of overeating. Physiology and Behavior, 2005, 86, 578-585.	1.0	12
311	How does †metabolic surgery†work its magic? New evidence for gut microbiota. Current Opinion in Endocrinology, Diabetes and Obesity, 2018, 25, 81-86.	1.2	12
312	Continuous glucose monitoring reveals glycemic variability and hypoglycemia after vertical sleeve gastrectomy in rats. Molecular Metabolism, 2020, 32, 148-159.	3.0	12
313	Vertical sleeve gastrectomy increases duodenal Lactobacillus spp. richness associated with the activation of intestinal HIF2α signaling and metabolic benefits. Molecular Metabolism, 2022, 57, 101432.	3.0	12
314	Failure of glucagon-like peptide-1 to induce panic attacks or anxiety in patients with panic disorder. Journal of Psychiatric Research, 2008, 42, 787-789.	1.5	11
315	MGAT2 deficiency and vertical sleeve gastrectomy have independent metabolic effects in the mouse. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E1065-E1072.	1.8	11
316	The Melanocortin-4 Receptor Integrates Circadian Light Cues and Metabolism. Endocrinology, 2015, 156, 1685-1691.	1.4	11
317	Growth differentiation factor 15 neutralization does not impact anorexia or survival in lipopolysaccharide-induced inflammation. IScience, 2021, 24, 102554.	1.9	11
318	Vertical sleeve gastrectomy improves ventilatory drive through a leptin-dependent mechanism. JCI Insight, 2019, 4, .	2.3	11
319	Hap1 and GABA: Thinking about food intake. Cell Metabolism, 2006, 3, 388-390.	7.2	10
320	Hypothalamic Akt PKB signaling in regulation of food intake. Frontiers in Bioscience - Scholar, 2012, S4, 953-966.	0.8	10
321	Rapid hepatic metabolism blunts the endocrine action of portally infused GLP-1 in male rats. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E189-E197.	1.8	10
322	Disruption of Glucagon-Like Peptide 1 Signaling in <i>Sim1</i> Neurons Reduces Physiological and Behavioral Reactivity to Acute and Chronic Stress. Journal of Neuroscience, 2017, 37, 184-193.	1.7	10
323	Wasting illness as a disorder of body weight regulation. Proceedings of the Nutrition Society, 1997, 56, 785-791.	0.4	9
324	The Effect of Vertical Sleeve Gastrectomy on a Rat Model of Polycystic Ovarian Syndrome. Endocrinology, 2011, 152, 3700-3705.	1.4	9

#	Article	IF	Citations
325	Female rats are relatively more sensitive to reduced lipid versus reduced carbohydrate availability. Nutrition and Diabetes, 2012, 2, e27-e27.	1.5	9
326	Assessment of the role of FGF15 in mediating the metabolic outcomes of murine vertical sleeve gastrectomy. American Journal of Physiology - Renal Physiology, 2020, 319, G669-G684.	1.6	9
327	Dietary induction of obesity and insulin resistance is associated with changes in Fgf21 DNA methylation in liver of mice. Journal of Nutritional Biochemistry, 2022, 100, 108907.	1.9	9
328	Measurement and quantification of stereotypy in freely behaving subjects: An information analysis. Behavior Research Methods, 1989, 21, 271-274.	1.3	8
329	Editorial: Targeted Gene Disruption in Endocrine Researchâ€"The Case of Glucagon-Like Peptide-1 and Neuroendocrine Function. Endocrinology, 2000, 141, 473-475.	1.4	8
330	The Effects of the Melanocortin Agonist (MT-II) on Subcutaneous and Visceral Adipose Tissue in Rodents. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 1153-1161.	1.3	8
331	Carbohydrate Content of Post-operative Diet Influences the Effect of Vertical Sleeve Gastrectomy on Body Weight Reduction in Obese Rats. Obesity Surgery, 2012, 22, 140-151.	1.1	8
332	Meal feeding improves oral glucose tolerance in male rats and causes adaptations in postprandial islet hormone secretion that are independent of plasma incretins or glycemia. American Journal of Physiology - Endocrinology and Metabolism, 2014, 307, E784-E792.	1.8	8
333	Gut HIF2α signaling is increased after VSG, and gut activation of HIF2α decreases weight, improves glucose, and increases GLP-1 secretion. Cell Reports, 2022, 38, 110270.	2.9	8
334	LPS induces rapid increase in GDF15 levels in mice, rats, and humans but is not required for anorexia in mice. American Journal of Physiology - Renal Physiology, 2022, 322, G247-G255.	1.6	8
335	Role for dopamine-3 receptor in the hyperphagia of an unanticipated high-fat meal in rats. Pharmacology Biochemistry and Behavior, 2006, 85, 190-197.	1.3	7
336	Deconstructing obesity: the face of fatness before and after the discovery of leptin. Diabetologia, 2012, 55, 3-6.	2.9	7
337	The obesity-associated transcription factor ETV5 modulates circulating glucocorticoids. Physiology and Behavior, 2015, 150, 38-42.	1.0	7
338	Defending a new hypothesis of how bariatric surgery works. Obesity, 2016, 24, 555-555.	1.5	7
339	Targeting the brain as a cure for type 2 diabetes. Nature Medicine, 2016, 22, 709-711.	15.2	7
340	Gut feeling for food choice. Nature, 2017, 542, 302-303.	13.7	7
341	A novel approach to glycemic control in type 2 diabetes mellitus, partial jejunal diversion: pre-clinical to clinical pathway. BMJ Open Diabetes Research and Care, 2017, 5, e000431.	1.2	7
342	7-OH-DPAT selectively reduces intake of both chow and high fat diets in different food intake regimens. Pharmacology Biochemistry and Behavior, 2003, 76, 517-523.	1.3	6

#	Article	IF	Citations
343	Roux-en-Y gastric bypass augments the feeding responses evoked by gastrin-releasing peptides. Journal of Surgical Research, 2016, 206, 517-524.	0.8	6
344	Improved in vivo imaging method for individual islets across the mouse pancreas reveals a heterogeneous insulin secretion response to glucose. Scientific Reports, 2021, 11, 603.	1.6	6
345	The Effect of Intragastric Ethanol on Meal Size in the Rat. Pharmacology Biochemistry and Behavior, 1997, 56, 379-382.	1.3	5
346	Electrical stimulation of renal nerves for modulating urine glucose excretion in rats. Bioelectronic Medicine, 2018, 4, 7.	1.0	5
347	A comparison of rodent models of vertical sleeve gastrectomy. Surgery for Obesity and Related Diseases, 2018, 14, 1471-1479.	1.0	5
348	The Iminosugar AMP-DNM Improves Satiety and Activates Brown Adipose Tissue Through GLP1. Diabetes, 2019, 68, 2223-2234.	0.3	5
349	Physiology of Energy Intake in the Weightâ€Reduced State. Obesity, 2021, 29, S25-S30.	1.5	5
350	Gastrokine-1, an anti-amyloidogenic protein secreted by the stomach, regulates diet-induced obesity. Scientific Reports, 2021, 11, 9477.	1.6	5
351	Anorexia and fat aversion induced by vertical sleeve gastrectomy is attenuated in neurotensin receptor 1 deficient mice. Endocrinology, $2021,162,.$	1.4	5
352	Vascular reactivity contributes to adipose tissue remodeling in obesity. Journal of Endocrinology, 2021, 251, 195-206.	1.2	5
353	More neurons, less weight. Nature Medicine, 2005, 11, 1276-1278.	15.2	4
354	Refinement of Perioperative Feeding in a Mouse Model of Vertical Sleeve Gastrectomy. Journal of the American Association for Laboratory Animal Science, 2018, 57, 295-301.	0.6	4
355	Kilohertz Frequency Stimulation of Renal Nerves for Modulating Blood Glucose Concentration in Diabetic Rats. , 2019 , , .		4
356	Nutrient and hormone composition of milk is altered in rodent dams post-bariatric surgery. Journal of Developmental Origins of Health and Disease, 2020, 11, 71-77.	0.7	4
357	Restructuring of the male mice peripheral circadian network after bariatric surgery. Journal of Endocrinology, 2021, 250, 67-79.	1.2	4
358	Vertical sleeve gastrectomy induces enteroendocrine cell differentiation of intestinal stem cells through bile acid signaling. JCI Insight, 2022, 7, .	2.3	4
359	Neuropeptides and the Control of Energy Homeostasis. , 2001, 5, 93-115.		3
360	Hormonal mediation of energy homeostasis in obesity, diabetes and related disorders. Drug Discovery Today Disease Mechanisms, 2005, 2, 321-326.	0.8	3

#	Article	IF	CITATIONS
361	Voluntary consumption of ethyl oleate reduces food intake and body weight in rats. Physiology and Behavior, 2008, 93, 912-918.	1.0	3
362	Assessment of mammographic breast density after sleeve gastrectomy. Surgery for Obesity and Related Diseases, 2018, 14, 1643-1651.	1.0	3
363	New horizons for future research – Critical issues to consider for maximizing research excellence and impact. Molecular Metabolism, 2018, 14, 53-59.	3.0	3
364	Intestinal extracellular vesicles are altered by vertical sleeve gastrectomy. American Journal of Physiology - Renal Physiology, 2021, 320, G153-G165.	1.6	3
365	CNS GNPDA2 Does Not Control Appetite, but Regulates Glucose Homeostasis. Frontiers in Nutrition, 2021, 8, 787470.	1.6	3
366	Our evolving understanding of the interaction between leptin and dopamine system to regulate ingestive behaviors. Molecular Metabolism, 2012, 1, 8-9.	3.0	2
367	A rodent model of partial intestinal diversion: a novel metabolic operation. Surgery for Obesity and Related Diseases, 2020, 16, 270-281.	1.0	2
368	OUP accepted manuscript. American Journal of Clinical Nutrition, 2022, 115, 591-592.	2.2	2
369	Expanding industry partnerships through an accelerated business engagement program. Surgery, 2019, 166, 143-146.	1.0	1
370	Some Caveats when Interpreting Surgical Mouse Models of Vertical Sleeve Gastrectomy. Obesity Surgery, 2020, 30, 1582-1585.	1.1	1
371	Enhanced AMPA Receptor Trafficking Mediates the Anorexigenic Effect of Endogenous Glucagon Like Peptide-1 in the Paraventricular Hypothalamus. SSRN Electronic Journal, 0, , .	0.4	1
372	The Physiology of Motivation Revisited. Appetite, 1998, 30, 341.	1.8	0
373	Combining Non-Isotopic Localization of NPY mRNA with Immunocytochemistry. , 2000, 153, 199-206.		0
374	Bypassing the duodenum does not improve insulin resistance associated with diet-induced obesity in rodents. Journal of the American College of Surgeons, 2010, 211, S16-S17.	0.2	0
375	Rat models of Mini Gastric Bypass and Single-Anastomosis Duodenal-Switch lead to metabolic improvements similar to Roux-en-Y Gastric Bypass and Vertical Sleeve Gastrectomy. Surgery for Obesity and Related Diseases, 2016, 12, S229.	1.0	0
376	Breast Density Following Bariatric Surgery: Is BI-RADS the Answer?. Surgery for Obesity and Related Diseases, 2017, 13, S155-S156.	1.0	0
377	Obesity and Diabetes, Regulation of Food Intake. , 2004, , 399-402.		0