Xu-Sheng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/417693/publications.pdf

Version: 2024-02-01

70 papers

5,343 citations

32 h-index 91884 69 g-index

72 all docs 72 docs citations

times ranked

72

6849 citing authors

#	Article	IF	CITATIONS
1	Multifunctional metal–organic framework catalysts: synergistic catalysis and tandem reactions. Chemical Society Reviews, 2017, 46, 126-157.	38.1	1,554
2	Postsynthetic ionization of an imidazole-containing metal–organic framework for the cycloaddition of carbon dioxide and epoxides. Chemical Science, 2017, 8, 1570-1575.	7.4	346
3	Direct and Selective Photocatalytic Oxidation of CH ₄ to Oxygenates with O ₂ on Cocatalysts/ZnO at Room Temperature in Water. Journal of the American Chemical Society, 2019, 141, 20507-20515.	13.7	253
4	Toward visible-light-assisted photocatalytic nitrogen fixation: A titanium metal organic framework with functionalized ligands. Applied Catalysis B: Environmental, 2020, 267, 118686.	20.2	149
5	Water-Stable Anionic Metal–Organic Framework for Highly Selective Separation of Methane from Natural Gas and Pyrolysis Gas. ACS Applied Materials & Interfaces, 2016, 8, 9777-9781.	8.0	148
6	An imidazolium-functionalized mesoporous cationic metal–organic framework for cooperative CO ₂ fixation into cyclic carbonate. Chemical Communications, 2018, 54, 342-345.	4.1	142
7	An Anion Metal–Organic Framework with Lewis Basic Sites-Rich toward Charge-Exclusive Cationic Dyes Separation and Size-Selective Catalytic Reaction. Inorganic Chemistry, 2016, 55, 2641-2649.	4.0	139
8	Soluble Metal-Nanoparticle-Decorated Porous Coordination Polymers for the Homogenization of Heterogeneous Catalysis. Journal of the American Chemical Society, 2016, 138, 10104-10107.	13.7	136
9	Fast, highly selective and sensitive anionic metal-organic framework with nitrogen-rich sites fluorescent chemosensor for nitro explosives detection. Journal of Hazardous Materials, 2018, 344, 283-290.	12.4	129
10	Facile Top-Down Strategy for Direct Metal Atomization and Coordination Achieving a High Turnover Number in CO ₂ Photoreduction. Journal of the American Chemical Society, 2020, 142, 19259-19267.	13.7	128
11	Phosphotungstic acid encapsulated in the mesocages of amine-functionalized metal–organic frameworks for catalytic oxidative desulfurization. Dalton Transactions, 2014, 43, 11950-11958.	3.3	124
12	Highly selective sensing of Fe ³⁺ by an anionic metal–organic framework containing uncoordinated nitrogen and carboxylate oxygen sites. Dalton Transactions, 2018, 47, 3452-3458.	3.3	119
13	Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven H2O2 evolution. Applied Catalysis B: Environmental, 2020, 265, 118581.	20.2	113
14	A Universal Approach to Aqueous Energy Storage via Ultralowâ€Cost Electrolyte with Superâ€Concentrated Sugar as Hydrogenâ€Bondâ€Regulated Solute. Advanced Materials, 2020, 32, e2000074.	21.0	110
15	Rhenium-modified porous covalent triazine framework for highly efficient photocatalytic carbon dioxide reduction in a solid–gas system. Catalysis Science and Technology, 2018, 8, 2224-2230.	4.1	104
16	Boosting Oxidative Desulfurization of Model and Real Gasoline over Phosphotungstic Acid Encapsulated in Metal–Organic Frameworks: The Window Size Matters. ChemCatChem, 2017, 9, 971-979.	3.7	103
17	Porous Anionic Indium–Organic Framework with Enhanced Gas and Vapor Adsorption and Separation Ability. ChemSusChem, 2014, 7, 2647-2653.	6.8	101
18	Titaniumâ€Based MOF Materials: From Crystal Engineering to Photocatalysis. Small Methods, 2020, 4, 2000486.	8.6	98

#	Article	IF	CITATIONS
19	Synthesis and characterization of Zn ₂ GeO ₄ /Mg-MOF-74 composites with enhanced photocatalytic activity for CO ₂ reduction. Catalysis Science and Technology, 2018, 8, 1288-1295.	4.1	86
20	Imidazoliumâ€Based Cationic Covalent Triazine Frameworks for Highly Efficient Cycloaddition of Carbon Dioxide. ChemCatChem, 2018, 10, 2036-2040.	3.7	84
21	Integration of adsorption and photosensitivity capabilities into a cationic multivariate metal-organic framework for enhanced visible-light photoreduction reaction. Applied Catalysis B: Environmental, 2019, 253, 323-330.	20.2	80
22	Bis(trifluoromethanesulfonyl)imide-based ionic liquids grafted on graphene oxide-coated solid-phase microextraction fiber for extraction and enrichment of polycyclic aromatic hydrocarbons in potatoes and phthalate esters in food-wrap. Talanta, 2016, 153, 392-400.	5.5	71
23	Engineering Fast Ion Conduction and Selective Cation Channels for a Highâ€Rate and Highâ€Voltage Hybrid Aqueous Battery. Angewandte Chemie - International Edition, 2018, 57, 7046-7050.	13.8	71
24	Microwave-assisted large scale synthesis of lanthanide metal–organic frameworks (Ln-MOFs), having a preferred conformation and photoluminescence properties. Dalton Transactions, 2015, 44, 11954-11962.	3.3	70
25	Efficient photocatalytic hydrogen evolution under visible light by ternary composite CdS@NU-1000/RGO. Catalysis Science and Technology, 2017, 7, 5113-5119.	4.1	67
26	Water-medium C–H activation over a hydrophobic perfluoroalkane-decorated metal-organic framework platform. Journal of Catalysis, 2016, 333, 1-7.	6.2	58
27	Hierarchically micro- and mesoporous metal–organic framework-supported alloy nanocrystals as bifunctional catalysts: Toward cooperative catalysis. Journal of Catalysis, 2015, 330, 452-457.	6.2	49
28	Size Engineering and Crystallinity Control Enable Highâ€Capacity Aqueous Potassiumâ€Ion Storage of Prussian White Analogues. ChemElectroChem, 2018, 5, 3887-3892.	3.4	48
29	Recent Progress on Exploring Stable Metal–Organic Frameworks for Photocatalytic Solar Fuel Production. Solar Rrl, 2020, 4, 1900547.	5.8	47
30	Patterned growth of luminescent metal–organic framework films: a versatile electrochemically-assisted microwave deposition method. Chemical Communications, 2016, 52, 3951-3954.	4.1	40
31	Creating Giant Secondary Building Layers via Alkali-Etching Exfoliation for Precise Synthesis of Metal–Organic Frameworks. Chemistry of Materials, 2019, 31, 7584-7589.	6.7	35
32	Enhanced Ion Conduction via Epitaxially Polymerized Two-Dimensional Conducting Polymer for High-Performance Cathode in Zinc-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 9347-9354.	8.0	35
33	Excellent Efficacy of MOF Films for Bronze Artwork Conservation: The Key Role of HKUST-1 Film Nanocontainers in Selectively Positioning and Protecting Inhibitors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37529-37534.	8.0	33
34	Recent Research on Strategies to Improve Ion Conduction in Alkali Metalâ€ion Batteries. Batteries and Supercaps, 2019, 2, 403-427.	4.7	32
35	<i>In Situ</i> Construction of a Multifunctional Quasi-Gel Layer for Long-Life Aqueous Zinc Metal Anodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 29746-29754.	8.0	31
36	Engineering interfacial charge transfer channel for efficient photocatalytic H2 evolution: The interplay of CoPx and Ca2+ dopant. Applied Catalysis B: Environmental, 2022, 303, 120887.	20.2	25

#	Article	IF	CITATIONS
37	Amino-Functionalized Titanium Based Metal-Organic Framework for Photocatalytic Hydrogen Production. Molecules, 2022, 27, 4241.	3.8	25
38	Graphene oxide for solid-phase extraction of bioactive phenolic acids. Analytical and Bioanalytical Chemistry, 2017, 409, 3541-3549.	3.7	24
39	Targeted removal of interfacial adventitious carbon towards directional charge delivery to isolated metal sites for efficient photocatalytic H2 production. Nano Energy, 2020, 76, 105077.	16.0	24
40	Amino-terminated ionic liquid modified graphene oxide coated silica composite stationary phase for hydrophilic interaction chromatography. RSC Advances, 2014, 4, 37381-37388.	3.6	23
41	Reduced Graphene Oxide-Polypyrrole Aerogel-Based Coaxial Heterogeneous Microfiber Enables Ultrasensitive Pressure Monitoring of Living Organisms. ACS Applied Materials & amp; Interfaces, 2021, 13, 5425-5434.	8.0	21
42	Ultrahigh photothermal temperature in a graphene/conducting polymer system enables contact thermochemical reaction. Journal of Materials Chemistry A, 2020, 8, 10891-10897.	10.3	20
43	Defective Pt nanoparticles encapsulated in mesoporous metal–organic frameworks for enhanced catalysis. Chemical Communications, 2018, 54, 8822-8825.	4.1	19
44	Recent Progresses on Applications of Conducting Polymers for Modifying Electrode of Rechargeable Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100088.	5.8	19
45	Room-Temperature Fabrication of a Liquid NaK Alloy-Based Membrane Electrode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 20423-20428.	8.0	17
46	Preparation of an Al ₂ O ₃ /SiO ₂ coreâ€"shell composite material for solid phase extraction of flavonoids. Analytical Methods, 2015, 7, 3486-3492.	2.7	16
47	Graphene Quantum Dots Supported on Fe-based Metal-Organic Frameworks for Efficient Photocatalytic CO ₂ Reduction [※] . Acta Chimica Sinica, 2022, 80, 22.	1.4	16
48	Ultrahigh Sensitive Wearable Pressure Sensors Based on Reduced Graphene Oxide/Polypyrrole Foam for Sign Language Translation. Advanced Materials Technologies, 2021, 6, 2001188.	5.8	15
49	Ab Initio Design of Graphene Block Enables Ultrasensitivity, Multimeterâ€Like Range Switchable Pressure Sensor. Advanced Materials Technologies, 2019, 4, 1800531.	5.8	13
50	Engineering Fast Ion Conduction and Selective Cation Channels for a Highâ€Rate and Highâ€Voltage Hybrid Aqueous Battery. Angewandte Chemie, 2018, 130, 7164-7168.	2.0	12
51	Cobalt-Based Metal–Organic Cages for Visible-Light-Driven Water Oxidation. Inorganic Chemistry, 2021, 60, 10380-10386.	4.0	12
52	A porous polyaniline nanotube sorbent for solid-phase extraction of the fluorescent reaction product of reactive oxygen species in cells, and its determination by HPLC. Mikrochimica Acta, 2018, 185, 468.	5.0	11
53	Synthesis and Interfacial Activity of Nonyl Phenol Polyoxyethylene Ether Carboxylate. Journal of Dispersion Science and Technology, 2014, 35, 641-646.	2.4	10
54	Double carboxyl silicane modified graphene oxide coated silica composite as sorbent for solid-phase extraction of quarternary alkaloids. Analytical Methods, 2015, 7, 135-142.	2.7	10

#	Article	IF	CITATIONS
55	Recent Progress on Exploring Stable Metal–Organic Frameworks for Photocatalytic Solar Fuel Production. Solar Rrl, 2020, 4, 2070084.	5.8	9
56	Light-induced electrostatic lithography: selective discharge of electrets by utilizing photothermal conversion of Ti ₃ C ₂ T _x MXene. Journal of Materials Chemistry A, 2020, 8, 19022-19027.	10.3	9
57	Effectively Regulating More Robust Amorphous Li Clusters for Ultrastable Dendriteâ€Free Cycling. Advanced Science, 2021, 8, e2101584.	11.2	9
58	Hierarchical Co@C-N synthesized by the confined pyrolysis of ionic liquid@metal–organic frameworks for the aerobic oxidation of alcohols. New Journal of Chemistry, 2022, 46, 7528-7536.	2.8	9
59	Selfâ€Healing and Shapeâ€Memory Superconducting Devices. Macromolecular Materials and Engineering, 2020, 305, 1900581.	3.6	8
60	Synergy between Confined Cobalt Centers and Oxygen Defects on αâ€Fe ₂ O ₃ Platelets for Efficient Photocatalytic CO ₂ Reduction. Solar Rrl, 2022, 6, 2100833.	5.8	6
61	Polyelectrolyte assembled graphene oxide coated silica composite as sorbent for solid-phase extraction of cinnamic acid and its derivatives. RSC Advances, 2015, 5, 4420-4427.	3.6	5
62	The preparation of a coreâ€"shell stationary phase by the <i>in situ</i> polymerization of a hydrophilic polymer on the surface of silica and its chromatographic performance. New Journal of Chemistry, 2020, 44, 11704-11709.	2.8	5
63	A graphene-based smart thermal conductive system regulated by a reversible pressure-induced mechanism. Nanoscale, 2019, 11, 11730-11735.	5 . 6	4
64	Zinc sulfide nanosheets as a novel solid-phase extraction material for flavonoids. Journal of Separation Science, 2017, 40, 1403-1409.	2.5	3
65	Bioinspired Gasâ€Confined Hollow Microfiber with 2D Conducting Polymer/Graphene Skeleton for Ultrasensitive Liquid Environment Sensor. Advanced Materials Interfaces, 2021, 8, .	3.7	2
66	Hofmannâ€type Metalâ€Organic Framework Based Bimetal/Carbon Nanosheets for Efficient Electrocatalytic Oxygen Evolution. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	1.2	2
67	Rapid Sonochemical Synthesis of an Intercalated Superconductor. ChemistrySelect, 2018, 3, 5652-5659.	1.5	1
68	Fluorine-Rich Interphase and Desolvation Regulation for a Long-Life and High-Rate TiS ₂ -Based Li-Metal Battery. Journal of Physical Chemistry C, 2022, 126, 5122-5130.	3.1	1
69	Noncontact and Highâ€Accuracy Smart Thermosensors Based on the Thermalâ€Field Resistivity Response of Conducting Polymers. Advanced Materials Technologies, 2018, 3, 1800086.	5 . 8	0
70	Titelbild: Engineering Fast Ion Conduction and Selective Cation Channels for a High-Rate and High-Voltage Hybrid Aqueous Battery (Angew. Chem. 24/2018). Angewandte Chemie, 2018, 130, 7065-7065.	2.0	0