
Gregory D Hoke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4176873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temporal changes in domestic water well methane reflect shifting sources of groundwater: Implications for evaluating contamination attributed to shale gas development. Applied Geochemistry, 2022, 136, 105175.	1.4	5
2	Contrasting climate controls on the hydrology of the mountainous Cauca River and its associated sedimentary basin: Implications for interpreting the sedimentary record. Geomorphology, 2021, 377, 107590.	1.1	5
3	The Case for Tectonic Control on Erosional Exhumation on the Tropical Northern Andes Based on Thermochronology Data. Tectonics, 2021, 40, e2020TC006652.	1.3	11
4	MODELAMIENTO TERMOCINEMÃTICO 3D DE LA HISTORIA DE EXHUMACIÓN DEL SECTOR DE GUAYABETAL, KM 58 VÃA BOGOTÕ– VILLAVICENCIO: RELACIONES ENTRE CLIMA, RELIEVE Y TECTÓNICA. IngenierÃa InvestigaciÃ3n Y Desarrollo, 2021, 20, 47-68.	0.0	0
5	Contrasting Impacts of a Hotter and Drier Future on Streamflow and Catchment Scale Sediment Flux in the High Andes. Journal of Geophysical Research F: Earth Surface, 2021, 126, e2021JF006182.	1.0	5
6	Neogene variations in slab geometry drive topographic change and drainage reorganization in the Northern Andes of Colombia. Global and Planetary Change, 2021, 206, 103641.	1.6	9
7	No valley deepening of the Tatra Mountains (Western Carpathians) during the past 300 ka. Geology, 2020, 48, 1006-1011.	2.0	7
8	Oligocene Deformation of the Chuandian Terrane in the SE Margin of the Tibetan Plateau Related to the Extrusion of Indochina. Tectonics, 2020, 39, e2019TC005974.	1.3	36
9	Detrital Thermochronology Reveals Major Middle Miocene Exhumation of the Eastern Flank ofthe Andes That Predates the PampeanFlat Slab (33°–33.5°S). Tectonics, 2020, 39, e2019TC005764.	1.3	12
10	A proxy for all seasons? A synthesis of clumped isotope data from Holocene soil carbonates. Quaternary Science Reviews, 2020, 234, 106259.	1.4	59
11	Cenozoic Uplift and Exhumation of the Frontal Cordillera Between 30° and 35° S and the Influence of the Subduction Dynamics in the Flat Slab Subduction Context, South Central Andes. Springer Earth System Sciences, 2018, , 387-409.	0.1	3
12	Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology. Earth and Planetary Science Letters, 2018, 490, 62-76.	1.8	118
13	Tectonic control of erosion in the southern Central Andes. Earth and Planetary Science Letters, 2018, 482, 160-170.	1.8	22
14	The Topographic Evolution of the Central Andes. Elements, 2018, 14, 231-236.	0.5	17
15	Geochronology transforms our view of how Tibet's southeast margin evolved. Geology, 2018, 46, 95-96.	2.0	32
16	Late Cretaceous drainage reorganization of the Middle Yangtze River. Lithosphere, 2018, 10, 392-405.	0.6	15
17	Pairwise sample comparisons and multidimensional scaling of detrital zircon ages with examples from the North American platform, basin, and passive margin settings. Lithosphere, 2018, 10, 478-491.	0.6	29
18	Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation. Nature Geoscience, 2018, 11, 944-948.	5.4	154

GREGORY D HOKE

#	Article	IF	CITATIONS
19	Regional landscape response to thrust belt dynamics: The Iglesia basin, Argentina. Basin Research, 2018, 30, 1141-1154.	1.3	8
20	Soil n-alkane ÎƊ and glycerol dialkyl glycerol tetraether (GDGT) distributions along an altitudinal transect from southwest China: Evaluating organic molecular proxies for paleoclimate and paleoelevation. Organic Geochemistry, 2017, 107, 21-32.	0.9	29
21	Paleoelevation reconstruction of the Paleocene-Eocene Gonjo basin, SE-central Tibet. Tectonophysics, 2017, 712-713, 170-181.	0.9	67
22	Thermochronologic Evidence for Late Eocene Andean Mountain Building at 30°S. Tectonics, 2017, 36, 2693-2713.	1.3	42
23	Reconciling tectonic shortening, sedimentation and spatial patterns of erosion from 10Be paleo-erosion rates in the Argentine Precordillera. Earth and Planetary Science Letters, 2016, 450, 173-185.	1.8	25
24	A practical tool for examining paleoerosion rates from sedimentary deposits using cosmogenic radionuclides: Examples from hypothetical scenarios and data. Geochemistry, Geophysics, Geosystems, 2016, 17, 5078-5088.	1.0	5
25	Methane occurrence is associated with sodiumâ€rich valley waters in domestic wells overlying the <scp>M</scp> arcellus shale in <scp>N</scp> ew <scp>Y</scp> ork <scp>S</scp> tate. Water Resources Research, 2016, 52, 206-226.	1.7	22
26	Temporal and spatial patterns of sediment routing across the southeast margin of the Tibetan Plateau: Insights from detrital zircon. Tectonics, 2016, 35, 2538-2563.	1.3	55
27	Eastern margin of Tibet supplies most sediment to the Yangtze River. Lithosphere, 2016, 8, 601-614.	0.6	15
28	Dating the incision of the Yangtze River gorge at the First Bend using threeâ€nuclide burial ages. Geophysical Research Letters, 2016, 43, 101-110.	1.5	62
29	Landscape response to changes in dynamic topography. Terra Nova, 2016, 28, 289-296.	0.9	17
30	Influence of vegetation type and site-to-site variability on soil carbonate clumped isotope records, Andean piedmont of Central Argentina (32–34°S). Earth and Planetary Science Letters, 2016, 440, 1-11.	1.8	39
31	Variations in soil carbonate formation and seasonal bias over >4 km of relief in the western Andes (30°S) revealed by clumped isotope thermometry. Earth and Planetary Science Letters, 2016, 441, 188-199.	1.8	50
32	Cenozoic Orogenic Evolution of the Southern Central Andes (32–36°S). Springer Earth System Sciences, 2016, , 63-98.	0.1	7
33	lodine as a sensitive tracer for detecting influence of organic-rich shale in shallow groundwater. Applied Geochemistry, 2015, 60, 29-36.	1.4	30
34	Near pure surface uplift of the Argentine Frontal Cordillera: insights from (U–Th)/He thermochronometry and geomorphic analysis. Geological Society Special Publication, 2015, 399, 383-399.	0.8	18
35	Geodynamic processes in the Andes of Central Chile and Argentina: an introduction. Geological Society Special Publication, 2015, 399, 1-12.	0.8	4
36	Evolution of shallow and deep structures along the Maipo–Tunuyán transect (33°40′S): from the Pacific coast to the Andean foreland. Geological Society Special Publication, 2015, 399, 63-82.	0.8	35

GREGORY D HOKE

#	Article	IF	CITATIONS
37	Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina. Earth and Planetary Science Letters, 2014, 406, 153-164.	1.8	37
38	Using Discriminant Analysis to Determine Sources of Salinity in Shallow Groundwater Prior to Hydraulic Fracturing. Environmental Science & Technology, 2014, 48, 9061-9069.	4.6	40
39	Stable isotopes reveal high southeast Tibetan Plateau margin since the Paleogene. Earth and Planetary Science Letters, 2014, 394, 270-278.	1.8	188
40	Stable isotopes of surface water across the <scp>L</scp> ongmenshan margin of the eastern <scp>T</scp> ibetan <scp>P</scp> lateau. Geochemistry, Geophysics, Geosystems, 2014, 15, 3416-3429.	1.0	38
41	An ultrasonic method for isolating nonclay components from clayâ€rich material. Geochemistry, Geophysics, Geosystems, 2014, 15, 492-498.	1.0	29
42	Hot or not? Impact of seasonally variable soil carbonate formation on paleotemperature and O-isotope records from clumped isotope thermometry. Earth and Planetary Science Letters, 2013, 361, 208-218.	1.8	101
43	Seasonal moisture sources and the isotopic composition of precipitation, rivers, and carbonates across the Andes at 32.5–35.5°S. Geochemistry, Geophysics, Geosystems, 2013, 14, 962-978.	1.0	45
44	Surface uplift and erosion of the southernmost Argentine Precordillera. Geomorphology, 2012, 153-154, 156-168.	1.1	35
45	Stable isotope composition of middle Miocene carbonates of the Frontal Cordillera and Sierras Pampeanas: Did the Paranaense seaway flood western and central Argentina?. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308, 293-303.	1.0	33
46	High-precision U-Pb zircon geochronology of the Late Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA): Temporal constraints on the early evolution of dinosaurs. Bulletin of the Geological Society of America, 2011, 123, 2142-2159.	1.6	159
47	Uplift of the Altiplano-Puna plateau: A view from the west. Tectonics, 2010, 29, n/a-n/a.	1.3	107
48	The stable isotope altimeter: Do Quaternary pedogenic carbonates predict modern elevations?. Geology, 2009, 37, 1015-1018.	2.0	39
49	Rise of the Andes. Science, 2008, 320, 1304-1307.	6.0	574
50	Paleosurfaces, paleoelevation, and the mechanisms for the late Miocene topographic development of the Altiplano plateau. Earth and Planetary Science Letters, 2008, 271, 192-201.	1.8	82
51	Geomorphic evidence for postâ€10 Ma uplift of the western flank of the central Andes 18°30′–22°S. Tectonics, 2007, 26, .	1.3	115
52	Pervasive cracking of the northern Chilean Coastal Cordillera: New evidence for forearc extension. Geology, 2005, 33, 973.	2.0	45
53	Trench-parallel shortening in the Northern Chilean Forearc: Tectonic and climatic implications. Bulletin of the Geological Society of America, 2005, 117, 89.	1.6	84
54	Groundwater-sapping origin for the giant quebradas of northern Chile. Geology, 2004, 32, 605.	2.0	82

#	Article	IF	CITATIONS
55	The weathering of stones due to dissolution. Environmental Geology, 2004, 46, 305.	1.2	17
56	Weathering and damage. Journal of Geophysical Research, 2002, 107, ECV 1-1-ECV 1-6.	3.3	15