Kjeld Nielsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4176795/publications.pdf Version: 2024-02-01

KIELD NIELSEN

#	Article	IF	CITATIONS
1	Platform-based product development in the process industry: a systematic literature review. International Journal of Production Research, 2023, 61, 1696-1719.	7.5	10
2	A Bibliometric and Sentiment Analysis of CARV and MCPC Conferences in the 21st Century: Towards Sustainable Customization. Lecture Notes in Mechanical Engineering, 2022, , 3-24.	0.4	0
3	Exploring a Data-Augmented Approach for Improved Module Driver Analysis. Lecture Notes in Mechanical Engineering, 2022, , 677-685.	0.4	Ο
4	Product Architecture Mining: Identifying Current Architectural Solutions. Lecture Notes in Mechanical Engineering, 2022, , 694-701.	0.4	0
5	Methods and Models to Evaluate the Investment of Reconfigurable Manufacturing Systems: Literature Review and Research Directions. Lecture Notes in Mechanical Engineering, 2022, , 138-146.	0.4	0
6	Impact of Dough Property Characterization on Industrial Bread Production. Lecture Notes in Mechanical Engineering, 2022, , 628-635.	0.4	0
7	Applying Modular Function Deployment for Non-assembled Products in the Process Industry. Lecture Notes in Mechanical Engineering, 2022, , 661-668.	0.4	1
8	Brownfield Design of Reconfigurable Manufacturing Architectures: An Application of a Modified MFD to the Capital Goods Industry. Procedia CIRP, 2022, 107, 1293-1298.	1.9	0
9	Module Drivers in Product Development: A Comprehensive Review and Synthesis. Procedia CIRP, 2022, 107, 1503-1508.	1.9	1
10	An Industry-Applicable Screening Tool for the Clarification of Changeability Requirements. IFIP Advances in Information and Communication Technology, 2021, , 471-478.	0.7	1
11	A Systematic Approach to Development of Changeable and Reconfigurable Manufacturing Systems. IFIP Advances in Information and Communication Technology, 2021, , 462-470.	0.7	2
12	Impact of Different Financial Evaluation Parameters for Reconfigurable Manufacturing System Investments. IFIP Advances in Information and Communication Technology, 2021, , 479-487.	0.7	0
13	Changeable Manufacturing: A Comparative Study of Requirements and Potentials in Two Industrial Cases. IFIP Advances in Information and Communication Technology, 2021, , 452-461.	0.7	0
14	A Tool for the Comparison of Concept Designs of Reconfigurable Manufacturing Systems. Procedia CIRP, 2021, 104, 1125-1130.	1.9	1
15	Integrated product-process modelling for platform-based co-development. International Journal of Production Research, 2020, 58, 6185-6201.	7.5	20
16	Classification coding of production systems for identification of platform candidates. CIRP Journal of Manufacturing Science and Technology, 2020, 28, 144-156.	4.5	5
17	Towards an Industry-Applicable Design Methodology for Developing Reconfigurable Manufacturing. IFIP Advances in Information and Communication Technology, 2020, , 449-456.	0.7	8
18	Applying and developing mass customization in construction industries – A multi case study. International Journal of Construction Supply Chain Management, 2020, 10, 141-171.	0.5	3

Kjeld Nielsen

#	Article	IF	CITATIONS
19	Mass Customization in the House Building Industry: Literature Review and Research Directions. Frontiers in Built Environment, 2019, 5, .	2.3	17
20	Engineering Education in Changeable and Reconfigurable Manufacturing: Using Problem-Based Learning in a Learning Factory Environment. Procedia CIRP, 2019, 81, 7-12.	1.9	29
21	Challenges in developing modular services in manufacturing companies: A multiple case study in Danish manufacturing industry. Procedia CIRP, 2019, 81, 399-404.	1.9	2
22	Potential Benefits and Challenges of Changeable Manufacturing in the Process Industry. Procedia CIRP, 2019, 81, 944-949.	1.9	5
23	Brownfield Development of Platforms for Changeable Manufacturing. Procedia CIRP, 2019, 81, 986-991.	1.9	9
24	Product and Process Variety Management: Case study in the Food Industry. Procedia CIRP, 2019, 81, 1065-1070.	1.9	8
25	Learning Factory with Product Configurator for Teaching Product Family Modelling and Systems Integration. Procedia Manufacturing, 2019, 28, 70-75.	1.9	4
26	Changeable Manufacturing Systems Supporting Circular Supply Chains. Procedia CIRP, 2019, 81, 1423-1428.	1.9	12
27	Process Innovation in Learning Factories: Towards a Reference Model. IFIP Advances in Information and Communication Technology, 2019, , 658-665.	0.7	6
28	Identification of Platform Candidates Through Production System Classification Coding. IFIP Advances in Information and Communication Technology, 2019, , 400-407.	0.7	0
29	A DSM Clustering Method for Product and Service Modularization. IFIP Advances in Information and Communication Technology, 2019, , 375-382.	0.7	1
30	Critical enablers of changeable and reconfigurable manufacturing and their industrial implementation. Journal of Manufacturing Technology Management, 2018, 29, 983-1002.	6.4	24
31	Evaluating the investment feasibility and industrial implementation of changeable and reconfigurable manufacturing concepts. Journal of Manufacturing Technology Management, 2018, 29, 449-477.	6.4	10
32	A participatory systems design methodology for changeable manufacturing systems. International Journal of Production Research, 2018, 56, 2769-2787.	7.5	27
33	A classification scheme for production system processes. Procedia CIRP, 2018, 72, 609-614.	1.9	9
34	Exploring Requirements and Implementation of Changeability and Reconfigurability in Danish Manufacturing. Procedia CIRP, 2018, 72, 665-670.	1.9	4
35	Framework for Integrating Production System Models and Product Family Models. Procedia CIRP, 2018, 72, 592-597.	1.9	8
36	A Conceptual Framework for Stage Configuration. IFIP Advances in Information and Communication Technology, 2018, , 101-109.	0.7	1

KJELD NIELSEN

#	Article	IF	CITATIONS
37	Modularity in Product-Service Systems: Literature Review and Future Research Directions. IFIP Advances in Information and Communication Technology, 2018, , 150-158.	0.7	7
38	Understanding Changeability Enablers and Their Impact on Performance in Manufacturing Companies. IFIP Advances in Information and Communication Technology, 2018, , 297-304.	0.7	5
39	A Changeable Jig-Less Welding Cell for Subassembly of Construction Machinery. IFIP Advances in Information and Communication Technology, 2018, , 305-311.	0.7	5
40	Challenges in Production and Manufacturing Systems Platform Development for Changeable Manufacturing. IFIP Advances in Information and Communication Technology, 2018, , 312-319.	0.7	3
41	Product-Process Modelling as an Enabler of Manufacturing Changeability. IFIP Advances in Information and Communication Technology, 2018, , 328-335.	0.7	3
42	Methodology for reconfigurable fixture architecture design. CIRP Journal of Manufacturing Science and Technology, 2018, 23, 172-186.	4.5	28
43	Mass Customization in Food Industries: Case and Literature Study. Springer Proceedings in Business and Economics, 2018, , 519-529.	0.3	3
44	Productivity, Challenges, and Applying Mass Customization in the Building and Construction Industry. Springer Proceedings in Business and Economics, 2018, , 551-565.	0.3	4
45	Exploring Barriers Toward the Development of Changeable and Reconfigurable Manufacturing Systems for Mass-Customized Products: An Industrial Survey. Springer Proceedings in Business and Economics, 2018, , 125-140.	0.3	7
46	Production Platform Development Through the Four Loops of Concern. Springer Proceedings in Business and Economics, 2018, , 479-493.	0.3	1
47	A Literature Review on Human Changeover Ability in High-Variety Production. IFIP Advances in Information and Communication Technology, 2018, , 442-448.	0.7	1
48	A Conceptual Digital Assistance System Supporting Manual Changeovers in High-Variety Production. IFIP Advances in Information and Communication Technology, 2018, , 449-455.	0.7	5
49	Can the SME Successfully Adopt Mass Customization?. Springer Proceedings in Business and Economics, 2018, , 531-549.	0.3	5
50	Towards a generic design method for reconfigurable manufacturing systems. Journal of Manufacturing Systems, 2017, 42, 179-195.	13.9	125
51	Mass Customization in the Building and Construction Industry. Springer Proceedings in Business and Economics, 2017, , 1-12.	0.3	1
52	Reconfigurable Manufacturing Systems in Small and Medium Enterprises. Springer Proceedings in Business and Economics, 2017, , 205-213.	0.3	9
53	Investigating the Impact of Product Volume and Variety on Production Ramp-Up. Springer Proceedings in Business and Economics, 2017, , 421-434.	0.3	5
54	Prerequisites and Barriers for the Development of Reconfigurable Manufacturing Systems for High Speed Ramp-up. Procedia CIRP, 2016, 51, 7-12.	1.9	39

Kjeld Nielsen

#	Article	IF	CITATIONS
55	Application of Module Drivers Creating Modular Manufacturing Equipment Enabling Changeability. Procedia CIRP, 2016, 52, 134-138.	1.9	4
56	Complexity Management in Mass Customization SMEs. Procedia CIRP, 2016, 51, 38-43.	1.9	22
57	Reconfigurable Manufacturing Potential in Small and Medium Enterprises with Low Volume and High Variety. Procedia CIRP, 2016, 51, 32-37.	1.9	17
58	Towards an engineering change management maturity grid. Journal of Engineering Design, 2016, 27, 361-389.	2.3	14
59	Product family modelling for manufacturing planning. International Journal of Mass Customisation, 2015, 5, 1.	1.2	0
60	Reconfigurable Manufacturing on Multiple Levels: Literature Review and Research Directions. IFIP Advances in Information and Communication Technology, 2015, , 266-273.	0.7	35
61	Application of Mass Customization in the Construction Industry. IFIP Advances in Information and Communication Technology, 2015, , 161-168.	0.7	4
62	Identification of Drivers for Modular Production. IFIP Advances in Information and Communication Technology, 2015, , 235-242.	0.7	6
63	Investigating the Potential in Reconfigurable Manufacturing: A Case-Study from Danish Industry. IFIP Advances in Information and Communication Technology, 2015, , 274-282.	0.7	11
64	Platform-Based Production Development. IFIP Advances in Information and Communication Technology, 2015, , 53-61.	0.7	2
65	Prediction of Process Time for Early Production Planning Purposes. IFIP Advances in Information and Communication Technology, 2015, , 406-413.	0.7	0
66	Cradle to Cradle Products, Modularity and Closed Loop Supply Chains. IFIP Advances in Information and Communication Technology, 2015, , 689-696.	0.7	2
67	Planning Nervousness in Product Segmentation: Empirical Analysis of Decision Parameters. Lecture Notes in Computer Science, 2014, , 411-418.	1.3	0
68	An Engineer-To-Order Mass Customization Development Framework. Lecture Notes in Computer Science, 2014, , 116-123.	1.3	0
69	Mass Customisation Assessment and Measurement Framework. , 2014, , 165-170.		5
70	Mass Customization and Performance Assessment: Overview and Research Directions. Lecture Notes in Production Engineering, 2014, , 333-347.	0.4	2
71	Mass Customization as Innovation Driver of International Competitiveness in Peripheral Regional SME Subcontractors. Lecture Notes in Production Engineering, 2014, , 349-357.	0.4	2
72	Mass Customization Measurements Metrics. Lecture Notes in Production Engineering, 2014, , 359-375.	0.4	4

KJELD NIELSEN

#	Article	IF	CITATIONS
73	Customization Issues: A Four-Level Customization Model. Lecture Notes in Production Engineering, 2014, , 73-82.	0.4	2
74	Planning Nervousness in Product Segmentation: Literature Review and Research Agenda. Lecture Notes in Computer Science, 2014, , 403-410.	1.3	2
75	Metrics for Assessing Product Variety Utilization. Lecture Notes in Computer Science, 2014, , 328-335.	1.3	Ο
76	Slack Resource as Evolutionary Determinant of International Manufacturing Joint Venture's Growth Performance. Lecture Notes in Computer Science, 2014, , 304-312.	1.3	0
77	A Case Investigation of Product Structure Complexity in Mass Customization Using a Data Mining Approach. Lecture Notes in Production Engineering, 2014, , 17-25.	0.4	Ο
78	Sustainability Evaluation of Mass Customization. IFIP Advances in Information and Communication Technology, 2013, , 175-182.	0.7	12
79	Closed Loop Supply Chains for Sustainable Mass Customization. IFIP Advances in Information and Communication Technology, 2013, , 425-432.	0.7	5
80	From EcoDesign to Industrial Metabolism: Redefinition of Sustainable Innovation and Competitive Sustainability. IFIP Advances in Information and Communication Technology, 2013, , 111-118.	0.7	1