
Nathalie Arbour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4175870/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DICAM promotes T _H 17 lymphocyte trafficking across the blood-brain barrier during autoimmune neuroinflammation. Science Translational Medicine, 2022, 14, eabj0473.	12.4	27
2	Stress Signal ULBP4, an NKG2D Ligand, Is Upregulated in Multiple Sclerosis and Shapes CD8 ⁺ T-Cell Behaviors. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .	6.0	6
3	Bacillus Calmette–Guerin vaccination and multiple sclerosis: A populationâ€based birth cohort study in Quebec, Canada. European Journal of Neurology, 2022, 29, 1791-1804.	3.3	3
4	Contact-Dependent Granzyme B-Mediated Cytotoxicity of Th17-Polarized Cells Toward Human Oligodendrocytes. Frontiers in Immunology, 2022, 13, 850616.	4.8	7
5	Increased frequency of proinflammatory CD4 T cells and pathological levels of serum neurofilament light chain in adult drugâ€resistant epilepsy. Epilepsia, 2021, 62, 176-189.	5.1	23
6	Interleukin-15 enhances proinflammatory T-cell responses in patients with MS and EAE. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	13
7	The ILâ€27/ILâ€27R axis is altered in CD4 ⁺ and CD8 ⁺ T lymphocytes from multiple sclerosis patients. Clinical and Translational Immunology, 2021, 10, e1262.	3.8	6
8	Identification of SARS-CoV-2–specific immune alterations in acutely ill patients. Journal of Clinical Investigation, 2021, 131, .	8.2	24
9	Capturing T Lymphocytes' Dynamic Interactions With Human Neural Cells Using Time-Lapse Microscopy. Frontiers in Immunology, 2021, 12, 668483.	4.8	11
10	Integrated immunovirological profiling validates plasma SARS-CoV-2 RNA as an early predictor of COVID-19 mortality. Science Advances, 2021, 7, eabj5629.	10.3	32
11	Interleukin-26, preferentially produced by T _H 17 lymphocytes, regulates CNS barrier function. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, .	6.0	25
12	Marital quality and inflammation: The moderating role of early life adversity Health Psychology, 2020, 39, 58-67.	1.6	3
13	Gross Motor Skills Training Leads to Increased Brain-Derived Neurotrophic Factor Levels in Healthy Older Adults: A Pilot Study. Frontiers in Physiology, 2019, 10, 410.	2.8	16
14	NKG2D and Its Ligand MULT1 Contribute to Disease Progression in a Mouse Model of Multiple Sclerosis. Frontiers in Immunology, 2019, 10, 154.	4.8	12
15	CD4 ⁺ Regulatory T Lymphocytes Prevent Impaired Cerebral Blood Flow in Angiotensin Ilâ€Induced Hypertension. Journal of the American Heart Association, 2019, 8, e009372.	3.7	19
16	Nucleus accumbens inflammation mediates anxiodepressive behavior and compulsive sucrose seeking elicited by saturated dietary fat. Molecular Metabolism, 2018, 10, 1-13.	6.5	78
17	Natural Killer Cells Regulate Th17 Cells After Autologous Hematopoietic Stem Cell Transplantation for Relapsing Remitting Multiple Sclerosis. Frontiers in Immunology, 2018, 9, 834.	4.8	51
18	Immunological and pathological characterization of fatal rebound MS activity following natalizumab withdrawal. Multiple Sclerosis Journal, 2017, 23, 72-81.	3.0	51

#	Article	IF	CITATIONS
19	Peripheral human CD4+CD8+ T lymphocytes exhibit a memory phenotype and enhanced responses to IL-2, IL-7 and IL-15. Scientific Reports, 2017, 7, 11612.	3.3	60
20	USP15 regulates type I interferon response and is required for pathogenesis of neuroinflammation. Nature Immunology, 2017, 18, 54-63.	14.5	90
21	Editorial: Lymphocytes in MS and EAE: More Than Just a CD4+ World. Frontiers in Immunology, 2017, 8, 133.	4.8	15
22	Production of <scp>IL</scp> â€27 in multiple sclerosis lesions by astrocytes and myeloid cells: Modulation of local immune responses. Glia, 2016, 64, 553-569.	4.9	56
23	ALS-linked misfolded SOD1 species have divergent impacts on mitochondria. Acta Neuropathologica Communications, 2016, 4, 43.	5.2	57
24	Melanoma cell adhesion molecule–positive <scp>CD</scp> 8 <scp>T</scp> lymphocytes mediate central nervous system inflammation. Annals of Neurology, 2015, 78, 39-53.	5.3	61
25	Netrin 1 regulates blood–brain barrier function and neuroinflammation. Brain, 2015, 138, 1598-1612.	7.6	141
26	Multiple Sclerosis and T Lymphocytes: An Entangled Story. Journal of NeuroImmune Pharmacology, 2015, 10, 528-546.	4.1	160
27	An optimized method to process mouse CNS to simultaneously analyze neural cells and leukocytes by flow cytometry. Journal of Neuroscience Methods, 2015, 247, 23-31.	2.5	55
28	Maraviroc and JC Virus–Associated Immune Reconstitution Inflammatory Syndrome. New England Journal of Medicine, 2014, 370, 486-488.	27.0	103
29	Enhanced levels of IL-27 and IL-27R in the central nervous system of multiple sclerosis patients. Journal of Neuroimmunology, 2014, 275, 173.	2.3	0
30	Elevated NKG2D ligand expression in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2014, 275, 66.	2.3	0
31	Netrin-1 regulates blood–brain barrier function and CNS inflammation. Journal of Neuroimmunology, 2014, 275, 26-27.	2.3	0
32	MCAM identifies inflammatory encephalitogenic CD8 T lymphocytes presenting a high cytotoxic capacity. Journal of Neuroimmunology, 2014, 275, 159.	2.3	0
33	Immunodetection of Outer Membrane Proteins by Flow Cytometry of Isolated Mitochondria. Journal of Visualized Experiments, 2014, , 51887.	0.3	5
34	Mitochondrial damage revealed by immunoselection for ALS-linked misfolded SOD1. Molecular Neurodegeneration, 2013, 8, .	10.8	0
35	Diminished Th17 (not Th1) responses underlie multiple sclerosis disease abrogation after hematopoietic stem cell transplantation. Annals of Neurology, 2013, 73, 341-354.	5.3	130
36	Cytotoxic NKG2C+ CD4 T Cells Target Oligodendrocytes in Multiple Sclerosis. Journal of Immunology, 2013, 190, 2510-2518.	0.8	86

#	Article	IF	CITATIONS
37	Mitochondrial damage revealed by immunoselection for ALS-linked misfolded SOD1. Human Molecular Genetics, 2013, 22, 3947-3959.	2.9	78
38	Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain, 2012, 135, 2906-2924.	7.6	128
39	Journal Club: Intrathecal effects of daclizumab treatment of multiple sclerosis. Neurology, 2012, 78, e131-3.	1.1	1
40	Lipocalin 2 is a novel immune mediator of experimental autoimmune encephalomyelitis pathogenesis and is modulated in multiple sclerosis. Glia, 2012, 60, 1145-1159.	4.9	118
41	Stimulation of Wnt/ĀŸ-Catenin Pathway in Human CD8+ T Lymphocytes from Blood and Lung Tumors Leads to a Shared Young/Memory Phenotype. PLoS ONE, 2012, 7, e41074.	2.5	25
42	Contribution of CD8 T lymphocytes to the immuno-pathogenesis of multiple sclerosis and its animal models. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 151-161.	3.8	61
43	B Cell-Derived IL-15 Enhances CD8 T Cell Cytotoxicity and Is Increased in Multiple Sclerosis Patients. Journal of Immunology, 2011, 187, 4119-4128.	0.8	59
44	Human brain endothelial cells endeavor to immunoregulate CD8 T cells via PD-1 ligand expression in multiple sclerosis. Journal of Neuroinflammation, 2011, 8, 155.	7.2	53
45	ILâ€27 increases the proliferation and effector functions of human naÃ⁻ve CD8 ⁺ T lymphocytes and promotes their development into Tc1 cells. European Journal of Immunology, 2011, 41, 47-59.	2.9	115
46	The majority of infiltrating CD8 T lymphocytes in multiple sclerosis lesions is insensitive to enhanced PD‣1 levels on CNS cells. Glia, 2011, 59, 841-856.	4.9	47
47	Central nervous system recruitment of effector memory CD8+ T lymphocytes during neuroinflammation is dependent on Â4 integrin. Brain, 2011, 134, 3560-3577.	7.6	112
48	Endogenously expressed matrix protein M1 and nucleoprotein of influenza A are efficiently presented by class I and class II major histocompatibility complexes. Journal of General Virology, 2011, 92, 1162-1171.	2.9	20
49	TLR-mediated B cell activation results in ectopic CLIP expression that promotes B cell-dependent inflammation. Journal of Leukocyte Biology, 2010, 88, 779-789.	3.3	16
50	Contribution of Astrocyte-Derived IL-15 to CD8 T Cell Effector Functions in Multiple Sclerosis. Journal of Immunology, 2010, 185, 5693-5703.	0.8	89
51	Human Activated T Lymphocytes Modulate IDO Expression in Tumors through Th1/Th2 Balance. Journal of Immunology, 2009, 183, 7752-7760.	0.8	47
52	OR.21. MCAM/CD146 is Expressed by Brain Endothelial Cells and Defines a Unique Effector Memory Lymphocyte Subset Involved in Neuroinflammation. Clinical Immunology, 2009, 131, S12.	3.2	2
53	Preferential recruitment of interferonâ€Î³â€"expressing T _H 17 cells in multiple sclerosis. Annals of Neurology, 2009, 66, 390-402.	5.3	494
54	TGF-alpha as a candidate tumor antigen for renal cell carcinomas. Cancer Immunology, Immunotherapy, 2009, 58, 1207-1218.	4.2	21

#	Article	IF	CITATIONS
55	Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system. Nature Immunology, 2008, 9, 137-145.	14.5	358
56	F.35. Contrasting Responses of Human Microglia and Monocytes to Dendritic Cell-inducing Conditions. Clinical Immunology, 2008, 127, S54.	3.2	0
57	The blood-brain barrier induces differentiation of migrating monocytes into Th17-polarizing dendritic cells. Brain, 2008, 131, 785-799.	7.6	169
58	Dendritic Cell Differentiation Signals Induce Anti-Inflammatory Properties in Human Adult Microglia. Journal of Immunology, 2008, 181, 8288-8297.	0.8	42
59	NKG2D-Mediated Cytotoxicity toward Oligodendrocytes Suggests a Mechanism for Tissue Injury in Multiple Sclerosis. Journal of Neuroscience, 2007, 27, 1220-1228.	3.6	84
60	Th1 Polarization of CD4+ T Cells by Toll-Like Receptor 3-Activated Human Microglia. Journal of Neuropathology and Experimental Neurology, 2007, 66, 848-859.	1.7	30
61	Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nature Medicine, 2007, 13, 1173-1175.	30.7	1,442
62	IL-15 and IL-15Rα Expressed in Human Central Nervous System by Astrocytes Contribute to CD8 T Lymphocyte Activation and Persistence: Implications for Multiple Sclerosis. Clinical Immunology, 2007, 123, S147-S148.	3.2	1
63	Human Blood–brain Barrier-associated DCs Originate from Blood Monocytes and Polarize CD4+ Lymphocytes into Th17 or Th1. Clinical Immunology, 2007, 123, S151-S152.	3.2	0
64	Cytotoxic Human IL-22-expressing Th17 Lymphocytes Promote Immune Cell Migration Into the Central Nervous System. Clinical Immunology, 2007, 123, S60.	3.2	0
65	Potential for Interferon Beta–Induced Serum Antibodies in Multiple Sclerosis to Inhibit Endogenous Interferon-Regulated Chemokine/Cytokine Responses Within the Central Nervous System. Archives of Neurology, 2006, 63, 1296.	4.5	20
66	A new clinically relevant approach to expand myelin specific T cells. Journal of Immunological Methods, 2006, 310, 53-61.	1.4	20
67	Reduced endocannabinoid immune modulation by a common cannabinoid 2 (CB2) receptor gene polymorphism: possible risk for autoimmune disorders. Journal of Leukocyte Biology, 2005, 78, 231-238.	3.3	113
68	TLR Signaling Tailors Innate Immune Responses in Human Microglia and Astrocytes. Journal of Immunology, 2005, 175, 4320-4330.	0.8	636
69	Measles virus interacts with human SLAM receptor on dendritic cells to cause immunosuppression. Virology, 2004, 323, 292-302.	2.4	71
70	Distinctive Properties of Human Adult Brain-Derived Myelin Progenitor Cells. American Journal of Pathology, 2004, 165, 2167-2175.	3.8	59
71	A new approach for evaluating antigen-specific T cell responses to myelin antigens during the course of multiple sclerosis. Journal of Neuroimmunology, 2003, 137, 197-209.	2.3	35
72	Measles Virus Infects and Suppresses Proliferation of T Lymphocytes from Transgenic Mice Bearing Human Signaling Lymphocytic Activation Molecule. Journal of Virology, 2003, 77, 3505-3515.	3.4	62

#	Article	IF	CITATIONS
73	c-Jun NH2-Terminal Kinase (JNK)1 and JNK2 Signaling Pathways Have Divergent Roles in CD8+ T Cell–mediated Antiviral Immunity. Journal of Experimental Medicine, 2002, 195, 801-810.	8.5	77
74	Neuroinvasion by Human Respiratory Coronaviruses. Journal of Virology, 2000, 74, 8913-8921.	3.4	437
75	Persistent Infection of Human Oligodendrocytic and Neuroglial Cell Lines by Human Coronavirus 229E. Journal of Virology, 1999, 73, 3326-3337.	3.4	115
76	Acute and Persistent Infection of Human Neural Cell Lines by Human Coronavirus OC43. Journal of Virology, 1999, 73, 3338-3350.	3.4	156
77	Comparison of immunofluorescence with monoclonal antibodies and RT-PCR for the detection of human coronaviruses 229E and OC43 in cell culture. Journal of Virological Methods, 1998, 72, 145-152.	2.1	49
78	Persistent Infection of Neural Cell Lines by Human Coronaviruses. Advances in Experimental Medicine and Biology, 1998, 440, 575-581.	1.6	25
79	Involvement of Aminopeptidase N (CD13) in Infection of Human Neural Cells by Human Coronavirus 229E. Journal of Virology, 1998, 72, 6511-6519.	3.4	47
80	N-FORMYL-METHIONYL-LEUCYL- PHENYLALANINE INDUCES AND MODULATES IL-1 AND IL-6 IN HUMAN PBMC. Cytokine, 1996, 8, 468-475.	3.2	24
81	Differential Effects of PKC Inhibitors on Gelatinase B and Interleukin 6 Production in the Mouse Macrophage. Cytokine, 1995, 7, 130-136.	3.2	32
82	Lymphocytes in MS and EAE: More than just a CD4+ World. Frontiers Research Topics, 0, , .	0.2	0