Xiao-jia Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/417568/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stability profiling and degradation products of dihydromyricetin in Dulbecco's modified eagle's medium. Food Chemistry, 2022, 378, 132033.	4.2	10
2	Rapid Screening of Lipase Inhibitors from Ophiopogonis Radix Using High-Performance Thin Layer Chromatography by Two Step Gradient Elution Combined with Bioautographic Method. Molecules, 2022, 27, 1155.	1.7	4
3	Key quality factors for Chinese herbal medicines entering the EU market. Chinese Medicine, 2022, 17, 29.	1.6	5
4	Chemical Stability of a Chinese Herbal Spirit Using LC-MS-Based Metabolomics and Accelerated Tests. Frontiers in Pharmacology, 2022, 13, 857706.	1.6	0
5	Chemical Comparison of Monk Fruit Products Processed by Different Drying Methods Using High-Performance Thin-Layer Chromatography Combined With Chemometric Analysis. Frontiers in Nutrition, 2022, 9, 887992.	1.6	3
6	An untargeted metabolomic insight into the high-pressure stress effect on the germination of wholegrain Oryza sativa L Food Research International, 2021, 140, 109984.	2.9	16
7	Rational Design of Thermosensitive Hydrogel to Deliver Nanocrystals with Intranasal Administration for Brain Targeting in Parkinson's Disease. Research, 2021, 2021, 9812523.	2.8	12
8	Enhancement of oral bioavailability and anti-Parkinsonian efficacy of resveratrol through a nanocrystal formulation. Asian Journal of Pharmaceutical Sciences, 2020, 15, 518-528.	4.3	43
9	Zebrafish: A Promising Model for Evaluating the Toxicity of Carbon Dot-Based Nanomaterials. ACS Applied Materials & Interfaces, 2020, 12, 49012-49020.	4.0	44
10	Quality standard of traditional Chinese medicines: comparison between European Pharmacopoeia and Chinese Pharmacopoeia and recent advances. Chinese Medicine, 2020, 15, 76.	1.6	51
11	Nonthermally driven volatilome evolution of food matrices: The case of high pressure processing. Trends in Food Science and Technology, 2020, 106, 365-381.	7.8	23
12	Brain-targeted delivery shuttled by black phosphorus nanostructure to treat Parkinson's disease. Biomaterials, 2020, 260, 120339.	5.7	66
13	NIR-II-Activated Yolk–Shell Nanostructures as an Intelligent Platform for Parkinsonian Therapy. ACS Applied Bio Materials, 2020, 3, 6876-6887.	2.3	17
14	Cucurbituril-Oriented Nanoplatforms in Biomedical Applications. ACS Applied Bio Materials, 2020, 3, 8211-8240.	2.3	11
15	Highly stabilized nanocrystals delivering Ginkgolide B in protecting against the Parkinson's disease. International Journal of Pharmaceutics, 2020, 577, 119053.	2.6	36
16	Black phosphorus as a versatile nanoplatform: From unique properties to biomedical applications. Journal of Innovative Optical Health Sciences, 2020, 13, .	0.5	18
17	Polymeric Nanoparticles-Based Brain Delivery with Improved Therapeutic Efficacy of Cinkgolide B in Parkinson's Disease. International Journal of Nanomedicine, 2020, Volume 15, 10453-10467.	3.3	54
18	Metabolic Profiling of Saponin-Rich Ophiopogon japonicus Roots Based on 1H NMR and HPTLC Platforms. Planta Medica, 2019, 85, 917-924.	0.7	15

XIAO-JIA CHEN

#	Article	IF	CITATIONS
19	Nanoparticles Mediating the Sustained Puerarin Release Facilitate Improved Brain Delivery to Treat Parkinson's Disease. ACS Applied Materials & Interfaces, 2019, 11, 45276-45289.	4.0	68
20	Oral Delivery of Puerarin Nanocrystals To Improve Brain Accumulation and Anti-Parkinsonian Efficacy. Molecular Pharmaceutics, 2019, 16, 1444-1455.	2.3	47
21	Cell Membrane Coating Technology: A Promising Strategy for Biomedical Applications. Nano-Micro Letters, 2019, 11, 100.	14.4	180
22	Serially coupled reversed phase-hydrophilic interaction liquid chromatography–tailored multiple reaction monitoring, a fit-for-purpose tool for large-scale targeted metabolomics of medicinal bile. Analytica Chimica Acta, 2018, 1037, 119-129.	2.6	43
23	Simultaneous determination of components with wide polarity and content ranges in Cistanche tubulosa using serially coupled reverse phase-hydrophilic interaction chromatography-tandem mass spectrometry. Journal of Chromatography A, 2017, 1501, 39-50.	1.8	62
24	New instrumentation for large-scale quantitative analysis of components spanning a wide polarity range by column-switching hydrophilic interaction chromatography-turbulent flow chromatography-reversed phase liquid chromatography-tandem mass spectrometry. RSC Advances, 2017, 7, 31838-31849.	1.7	12
25	Natural formulas and the nature of formulas: Exploring potential therapeutic targets based on traditional Chinese herbal formulas. PLoS ONE, 2017, 12, e0171628.	1.1	36
26	Anticancer Activities of Protopanaxadiol- and Protopanaxatriol-Type Ginsenosides and Their Metabolites. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-19.	0.5	74
27	Saponins from Chinese Medicines as Anticancer Agents. Molecules, 2016, 21, 1326.	1.7	110
28	Phytochemistry and Pharmacology of <i>Carthamus tinctorius</i> L The American Journal of Chinese Medicine, 2016, 44, 197-226.	1.5	120
29	Discrimination of Three <i>Panax</i> Species Based on Differences in Volatile Organic Compounds Using a Static Headspace GC-MS-Based Metabolomics Approach. The American Journal of Chinese Medicine, 2016, 44, 663-676.	1.5	13
30	Ophiopogon japonicus—A phytochemical, ethnomedicinal and pharmacological review. Journal of Ethnopharmacology, 2016, 181, 193-213.	2.0	148
31	A Systematic Review of the Anticancer Properties of Compounds Isolated from Licorice (Gancao). Planta Medica, 2015, 81, 1670-1687.	0.7	77
32	Traceability and Quality Control in Traditional Chinese Medicine: From Chemical Fingerprint to Two-Dimensional Barcode. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-6.	0.5	12
33	Chemical Constituents, Quality Control, and Bioactivity of Epimedii Folium (Yinyanghuo). The American Journal of Chinese Medicine, 2015, 43, 783-834.	1.5	56
34	Determination of six polyynes in <i>Oplopanax horridus</i> and <i>Oplopanax elatus</i> using polyethylene glycol modified reversed migration microemulsion electrokinetic chromatography. Electrophoresis, 2014, 35, 2959-2964.	1.3	9
35	Simultaneous determination of seven hydrophilic bioactive compounds in water extract of Polygonum multiflorumusing pressurized liquid extraction and short-end injection micellar electrokinetic chromatography. Chemistry Central Journal, 2013, 7, 45.	2.6	7
36	Chemistry, bioactivity and quality control of Dendrobium, a commonly used tonic herb in traditional Chinese medicine. Phytochemistry Reviews, 2013, 12, 341-367.	3.1	154

XIAO-JIA CHEN

#	Article	IF	CITATIONS
37	Quality evaluation of Polygonum multiflorum in China based on HPLC analysis of hydrophilic bioactive compounds and chemometrics. Journal of Pharmaceutical and Biomedical Analysis, 2013, 72, 223-230.	1.4	35
38	Quantitative determination of arenobufagin in rat plasma by ultra fast liquid chromatography–tandem mass spectrometry and its application in a pharmacokinetic study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 939, 86-91.	1.2	13
39	Effect of ion adsorption on <scp>CEC</scp> separation of small molecules using hypercrosslinked porous polymer monolithic capillary columns. Journal of Separation Science, 2012, 35, 1502-1506.	1.3	12
40	CE and CEC analysis of phytochemicals in herbal medicines. Electrophoresis, 2012, 33, 168-179.	1.3	23
41	Comparison of polysaccharides from different Dendrobium using saccharide mapping. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 977-983.	1.4	41
42	CE and CEC of nucleosides and nucleotides in food materials. Electrophoresis, 2010, 31, 2092-2105.	1.3	28
43	Effect of stability of internal standard on quantification of 15 flavonoids in <i>Epimedium </i> using CZE. Journal of Separation Science, 2009, 32, 275-281.	1.3	16
44	Differentiation of Herba Cistanches by fingerprint with high-performance liquid chromatography–diode array detection–mass spectrometry. Journal of Chromatography A, 2009, 1216, 2156-2162.	1.8	70
45	Simultaneous determination of five flavonoids in licorice using pressurized liquid extraction and capillary electrochromatography coupled with peak suppression diode array detection. Journal of Chromatography A, 2009, 1216, 7329-7335.	1.8	54
46	Simultaneous determination of seven flavonoids in <i>Epimedium</i> using pressurized liquid extraction and capillary electrochromatography. Journal of Separation Science, 2008, 31, 881-887.	1.3	31
47	A rapid method for simultaneous determination of 15 flavonoids in Epimedium using pressurized liquid extraction and ultra-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2008, 46, 226-235.	1.4	93
48	Simultaneous determination of 15 flavonoids in Epimedium using pressurized liquid extraction and high-performance liquid chromatography. Journal of Chromatography A, 2007, 1163, 96-104.	1.8	90
49	Isolation of Two Sucrose Esters from Polygala tenuifolia by High Speed Countercurrent Chromatography. Journal of Liquid Chromatography and Related Technologies, 2005, 28, 1583-1592.	0.5	10
50	Application of Chemometrics in Capillary Electrophoresis Analysis of Herbal Medicines. , 0, , 227-242.		1