Kei Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4175051/publications.pdf

Version: 2024-02-01

88 papers	2,779 citations	196777 29 h-index	242451 47 g-index
рирего	Citations	II IIICX	5 macx
99 all docs	99 docs citations	99 times ranked	3175 citing authors

#	Article	IF	Citations
1	Secondary organic aerosol formation from gasoline and diesel vehicle exhaust under light and dark conditions. Environmental Science Atmospheres, 2022, 2, 46-64.	0.9	5
2	Investigation of OH-reactivity budget in the isoprene, \hat{l}_{\pm} -pinene and m-xylene oxidation with OH under high NOx conditions. Atmospheric Environment, 2022, 271, 118916.	1.9	6
3	Formation of secondary organic aerosol tracers from anthropogenic and biogenic volatile organic compounds under varied NO and oxidant conditions. Atmospheric Environment: X, 2022, , 100169.	0.8	O
4	Impacts of missing OH reactivity and aerosol uptake of HO2 radicals on tropospheric O3 production during the AQUAS-Kyoto summer campaign in 2018. Atmospheric Environment, 2022, 281, 119130.	1.9	1
5	Temperature and acidity dependence of secondary organic aerosol formation from & amp;lt;l>l±-pinene ozonolysis with a compact chamber system. Atmospheric Chemistry and Physics, 2021, 21, 5983-6003.	1.9	17
6	Source contributions to multiple toxic potentials of atmospheric organic aerosols. Science of the Total Environment, 2021, 773, 145614.	3.9	30
7	Kinetics and impacting factors of HO ₂ uptake onto submicron atmospheric aerosols during the 2019 Air QUAlity Study (AQUAS) in Yokohama, Japan. Atmospheric Chemistry and Physics, 2021, 21, 12243-12260.	1.9	16
8	Effects of Metal Ions on Aqueous-Phase Decomposition of α-Hydroxyalkyl-Hydroperoxides Derived from Terpene Alcohols. Environmental Science & Environm	4.6	5
9	A quantitative understanding of total OH reactivity and ozone production in a coastal industrial area during the Yokohama air quality study (AQUAS) campaign of summer 2019. Atmospheric Environment, 2021, 267, 118754.	1.9	2
10	Nitrate radical, ozone and hydroxyl radical initiated aging of limonene secondary organic aerosol. Atmospheric Environment: X, 2021, 9, 100102.	0.8	0
11	Structural Characterisation of Dimeric Esters in \hat{l}_{\pm} -Pinene Secondary Organic Aerosol Using N2 and CO2 Ion Mobility Mass Spectrometry. Atmosphere, 2021, 12, 17.	1.0	5
12	Four- and Five-Carbon Dicarboxylic Acids Present in Secondary Organic Aerosol Produced from Anthropogenic and Biogenic Volatile Organic Compounds. Atmosphere, 2021, 12, 1703.	1.0	9
13	Aerosol Liquid Water Promotes the Formation of Water-Soluble Organic Nitrogen in Submicrometer Aerosols in a Suburban Forest. Environmental Science & Technology, 2020, 54, 1406-1414.	4.6	33
14	Mid carbon (C6+-C29+) in refractory black carbon aerosols is a potential tracer of open burning of rice straw: Insights from atmospheric observation and emission source studies. Atmospheric Environment, 2020, 238, 117729.	1.9	11
15	Modeling the Effects of Dimerization and Bulk Diffusion on the Evaporative Behavior of Secondary Organic Aerosol Formed from α-Pinene and 1,3,5-Trimethylbenzene. ACS Earth and Space Chemistry, 2020, 4, 1931-1946.	1.2	7
16	Comparative Analysis of PM2.5-Bound Polycyclic Aromatic Hydrocarbons (PAHs), Nitro-PAHs (NPAHs), and Water-Soluble Inorganic Ions (WSIIs) at Two Background Sites in Japan. International Journal of Environmental Research and Public Health, 2020, 17, 8224.	1.2	17
17	Volatility Distribution of Organic Compounds in Sewage Incineration Emissions. Environmental Science &	4.6	10
18	Total hydroxyl radical reactivity measurements in a suburban area during AQUAS–Tsukuba campaign in summer 2017. Science of the Total Environment, 2020, 740, 139897.	3.9	9

#	Article	IF	Citations
19	Degradation of PAHs during long range transport based on simultaneous measurements at Tuoji Island, China, and at Fukue Island and Cape Hedo, Japan. Environmental Pollution, 2020, 260, 113906.	3.7	23
20	Effects of pH on Interfacial Ozonolysis of \hat{l}_{\pm} -Terpineol. Journal of Physical Chemistry A, 2019, 123, 7148-7155.	1.1	21
21	Relative and Absolute Sensitivity Analysis on Ozone Production in Tsukuba, a City in Japan. Environmental Science & Environmental Science & Environmen	4.6	17
22	Investigation of dark condition nitrate radical- and ozone-initiated aging of toluene secondary organic aerosol: Importance of nitrate radical reactions with phenolic products. Atmospheric Environment, 2019, 219, 117049.	1.9	14
23	Seasonal and annual changes in PAH concentrations in a remote site in the Pacific Ocean. Scientific Reports, 2019, 9, 12591.	1.6	30
24	A study of volatility by composition, heating, and dilution measurements of secondary organic aerosol from 1,3,5-trimethylbenzene. Atmospheric Chemistry and Physics, 2019, 19, 14901-14915.	1.9	16
25	Effect of Oxidation Process on Complex Refractive Index of Secondary Organic Aerosol Generated from Isoprene. Environmental Science & Environmental Sc	4.6	19
26	Studying volatility from composition, dilution, and heating measurements of secondary organic aerosols formed during & amp;lt;i& amp;gt;l±& amp;lt;/i& amp;gt;-pinene ozonolysis. Atmospheric Chemistry and Physics, 2018, 18, 5455-5466.	1.9	16
27	Contributions of Condensable Particulate Matter to Atmospheric Organic Aerosol over Japan. Environmental Science & Technology, 2018, 52, 8456-8466.	4.6	54
28	A Comparison of Particulate-Bound Polycyclic Aromatic Hydrocarbons Long-Range Transported from the Asian Continent to the Noto Peninsula and Fukue Island, Japan. Asian Journal of Atmospheric Environment, 2018, 12, 369-376.	0.4	17
29	Direct observation of new particle formation during ozonolysis of isoprene and ethene competing against the growth of preexisting particles. Atmospheric Environment, 2017, 170, 149-155.	1.9	7
30	Missing ozone-induced potential aerosol formation in a suburban deciduous forest. Atmospheric Environment, 2017, 171, 91-97.	1.9	2
31	Total OH reactivity measurements for the OH-initiated oxidation of aromatic hydrocarbons in the presence of NOx. Atmospheric Environment, 2017, 171, 272-278.	1.9	15
32	Sensitivities of Simulated Source Contributions and Health Impacts of PM _{2.5} to Aerosol Models. Environmental Science & Environmental Scienc	4.6	14
33	Aerosol Health Effects from Molecular to Global Scales. Environmental Science & Emp; Technology, 2017, 51, 13545-13567.	4.6	384
34	Analysis of Organic Aerosol in Fukuoka, Japan Using a PMF Method. Aerosol and Air Quality Research, 2016, 16, 314-322.	0.9	18
35	Influence of Trans-Boundary Air Pollution on the Urban Atmosphere in Fukuoka, Japan. Atmosphere, 2016, 7, 51.	1.0	18
36	Temperature Effects on Secondary Organic Aerosol (SOA) from the Dark Ozonolysis and Photo-Oxidation of Isoprene. Environmental Science & Environmental	4.6	37

#	Article	IF	Citations
37	Dialdehyde Production during Direct Dissociation of Energy-rich Criegee Intermediates Produced by Ozonolysis of Cycloalkenes. Chemistry Letters, 2016, 45, 916-918.	0.7	1
38	Terpenylic acid and nine-carbon multifunctional compounds formed during the aging of \hat{l}^2 -pinene ozonolysis secondary organic aerosol. Atmospheric Environment, 2016, 130, 127-135.	1.9	32
39	Gas-phase Ozone Reactions with $\langle i \rangle Z \langle i \rangle$ -3-Hexenal and $\langle i \rangle Z \langle i \rangle$ -3-Hexen-1-ol: Formation Yields of OH Radical, Propanal, and Ethane. Chemistry Letters, 2015, 44, 457-458.	0.7	5
40	Transboundary secondary organic aerosol in western Japan: An observed limitation of the f44 oxidation indicator. Atmospheric Environment, 2015, 120, 71-75.	1.9	5
41	Evaluation of elemental quantitative values of atmospheric aerosol samples by PIXE method. International Journal of PIXE, 2015, 25, 13-22.	0.4	1
42	Complex refractive index of secondary organic aerosol generated from isoprene/NO $<$ sub $>$ x $<$ /sub $>$ photooxidation in the presence and absence of SO $<$ sub $>$ 2 $<$ /sub $>$. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7777-7787.	1.2	27
43	4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments. Atmospheric Environment, 2015, 110, 93-102.	1.9	35
44	Verification of Chemical Transport Models for PM2.5 Chemical Composition Using Simultaneous Measurement Data over Japan. Aerosol and Air Quality Research, 2015, 15, 2009-2023.	0.9	28
45	Transboundary Secondary Organic Aerosol in Western Japan Indicated by the \hat{l}' sup>13C of Water-Soluble Organic Carbon and the <i>m</i> < <>< > 44 Signal in Organic Aerosol Mass Spectra. Environmental Science & E	4.6	19
46	Analysis of secondary organic aerosols from ozonolysis of isoprene by proton transfer reaction mass spectrometry. Atmospheric Environment, 2014, 97, 397-405.	1.9	53
47	Impact of long-range transport of aerosols on the PM2.5 composition at a major metropolitan area in the northern Kyushu area of Japan. Atmospheric Environment, 2014, 97, 416-425.	1.9	79
48	Secondary organic aerosol model intercomparison based on secondary organic aerosol to odd oxygen ratio in Tokyo. Journal of Geophysical Research D: Atmospheres, 2014, 119, 13,489.	1.2	20
49	Characterization of nitromethane emission from automotive exhaust. Atmospheric Environment, 2013, 81, 523-531.	1.9	34
50	On-line measurements of gaseous nitro-organic compounds in diesel vehicle exhaust by proton-transfer-reaction mass spectrometry. Atmospheric Environment, 2013, 73, 195-203.	1.9	38
51	Effect of OH radical scavengers on secondary organic aerosol formation from reactions of isoprene with ozone. Atmospheric Environment, 2013, 79, 147-154.	1.9	30
52	Real-Time Study of Particle-Phase Products from \hat{l} ±-Pinene Ozonolysis and Isoprene Photooxidation Using Particle into Liquid Sampling Directly Coupled to a Time-of-Flight Mass Spectrometer (PILS-ToF). Aerosol Science and Technology, 2013, 47, 1374-1382.	1.5	14
53	Wavelength and NO _x dependent complex refractive index of SOAs generated from the photooxidation of toluene. Atmospheric Chemistry and Physics, 2013, 13, 531-545.	1.9	129
54	Transported and Local Organic Aerosols over Fukuoka, Japan. Aerosol and Air Quality Research, 2013, 13, 1263-1272.	0.9	15

#	Article	IF	CITATIONS
55	AMS and LC/MS analyses of SOA from the photooxidation of benzene and 1,3,5-trimethylbenzene in the presence of NO _x : effects of chemical structure on SOA aging. Atmospheric Chemistry and Physics, 2012, 12, 4667-4682.	1.9	113
56	Kinetic Study of the Daytime Atmospheric Fate of $(\langle i \rangle Z \langle i \rangle)$ -3-Hexenal. Journal of Physical Chemistry A, 2012, 116, 8523-8529.	1.1	6
57	Wavelength Dependence of Refractive Index of Secondary Organic Aerosols Generated during the Ozonolysis and Photooxidation of α-Pinene. Scientific Online Letters on the Atmosphere, 2012, 8, 119-123.	0.6	32
58	Secondary organic aerosol formation from phenolic compounds in the absence of NO _x . Atmospheric Chemistry and Physics, 2011, 11, 10649-10660.	1.9	78
59	Secondary organic aerosol formation from the photooxidation of isoprene, 1,3-butadiene, and 2,3-dimethyl-1,3-butadiene under high NO _x conditions. Atmospheric Chemistry and Physics, 2011, 11, 7301-7317.	1.9	40
60	Characterization of Aerosol Particles in the Tokyo Metropolitan Area using Two Different Particle Mass Spectrometers. Aerosol Science and Technology, 2011, 45, 315-326.	1.5	11
61	Aerial Observation of Aerosols Transported from East Asia — Chemical Composition of Aerosols and Layered Structure of an Air Mass over the East China Sea. Aerosol and Air Quality Research, 2011, 11, 497-507.	0.9	29
62	Mass spectrometric study of secondary organic aerosol formed from the photo-oxidation of aromatic hydrocarbons. Atmospheric Environment, 2010, 44, 1080-1087.	1.9	95
63	Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of ⟨i⟩ĺ±⟨/i⟩â€pinene. Journal of Geophysical Research, 2010, 115, .	3.3	130
64	Long-range transport of particulate polycyclic aromatic hydrocarbons at Cape Hedo remote island site in the East China Sea between 2005 and 2008. Journal of Atmospheric Chemistry, 2008, 61, 243-257.	1.4	22
65	Detection of nitrooxypolyols in secondary organic aerosol formed from the photooxidation of conjugated dienes under high-NO conditions. Atmospheric Environment, 2008, 42, 6851-6861.	1.9	57
66	Single Particle Analysis of Secondary Organic Aerosols Formed from 1,4-Cyclohexadiene Ozonolysis Using a Laser-Ionization Single-Particle Aerosol Mass Spectrometer. Bulletin of the Chemical Society of Japan, 2008, 81, 120-126.	2.0	7
67	Real-Time Analysis of Secondary Organic Aerosol Particles Formed from Cyclohexene Ozonolysis Using a Laser-Ionization Single-Particle Aerosol Mass Spectrometer. Analytical Sciences, 2007, 23, 507-512.	0.8	18
68	Secondary Organic Aerosol Formation during the Photooxidation of Toluene:  NO <i>_x</i> Dependence of Chemical Composition. Journal of Physical Chemistry A, 2007, 111, 9796-9808.	1.1	166
69	Production of the radicals in the ozonolysis of ethene: A chamber study by FT-IR and PERCA. Chemical Physics Letters, 2006, 427, 461-465.	1.2	12
70	Chemical Compositions of Secondary Organic Aerosol from the Ozonolysis of Cyclohexene in the Absence of Seed Particles. Chemistry Letters, 2005, 34, 1584-1585.	0.7	9
71	Kinetic measurements for the reactions of ozone with crotonaldehyde and its methyl derivatives and calculations of transition-state theoryElectronic supplementary information (ESI) available: The stationary-point geometries optimized at B3LYP/6-31G(d,p) for the reactions of ozone with nine unsaturated carbonyls. See http://www.rsc.org/suppdata/cp/b4/b402496f/. Physical Chemistry Chemical	1.3	31
72	Physics, 2004, 6, 3969. Secondary Organic Aerosol Formation during the Photo-Oxidation of Toluene: Dependence on Initial Hydrocarbon Concentration. Bulletin of the Chemical Society of Japan, 2004, 77, 667-671.	2.0	27

#	Article	IF	CITATIONS
73	Cyanomethylene Formation from the Reaction of Excited Nitrogen Atoms with Acetylene:Â A Crossed Beam and ab Initio Study. Journal of the American Chemical Society, 2000, 122, 4443-4450.	6.6	71
74	Kinetics and mechanisms of the reactions of CH and CD with H2S and D2S. Chemical Physics, 1999, 242, 1-10.	0.9	7
75	Theoretical calculations of thermal rate constants for the N(2D)+acetylene reaction. Chemical Physics Letters, 1999, 312, 503-510.	1.2	9
76	Measurements of Thermal Rate Constants for the Reactions of N(2D,2P) with C2H4and C2D4between 225 and 292 K. Journal of Physical Chemistry A, 1999, 103, 8650-8656.	1.1	27
77	Kinetic Studies on the N(2D, 2P) + CH4 and CD4 Reactions:  The Role of Nonadiabatic Transitions on Thermal Rate Constants. Journal of Physical Chemistry A, 1999, 103, 250-255.	1.1	29
78	Reactions of C() with H2, HD and D2: kinetic isotope effect and the CD/CH branching ratio. Chemical Physics, 1998, 237, 195-204.	0.9	47
79	Measurements of Thermal Rate Constants and Theoretical Calculations for the N(2D,2P) + C2H2and C2D2Reactions. Journal of Physical Chemistry A, 1998, 102, 6251-6258.	1.1	38
80	Ab Initio Molecular Orbital Calculations for the N(2D) + Ethylene Reaction. Journal of Physical Chemistry A, 1998, 102, 10391-10398.	1.1	29
81	Ab Initio Molecular Orbital Calculations of the Potential Energy Surfaces for the N(2D) + CH4 Reaction. Journal of Physical Chemistry A, 1998, 102, 254-259.	1.1	49
82	Translational energy distributions of the products of the 193 and 157 nm photodissociation of chloroethylenes. Journal of Chemical Physics, 1997, 106, 10123-10133.	1.2	30
83	Infrared multiphoton dissociation of 1,1-dichloroethene. Chemical Physics Letters, 1995, 232, 357-363.	1.2	11
84	Translational distributions of fragments produced in the photodissociation of vinyl fluoride at 157 nm. Chemical Physics Letters, 1995, 242, 401-406.	1.2	27
85	Rotational state distribution of HCl formed in the infrared multiphoton dissociation of trichloroethene. Chemical Physics Letters, 1995, 245, 432-436.	1.2	2
86	Nascent internal state distributions of ZnH(X 2Σ+) produced in the reactions of Zn(4 1P1) with some alkane hydrocarbons. Journal of Chemical Physics, 1994, 101, 4803-4808.	1.2	21
87	Nascent rotational state distributions of ZnH (X $2\hat{1}$ £+) produced in the reactions of Zn (4 1P1) with simple alkane hydrocarbons. Chemical Physics Letters, 1993, 214, 271-275.	1.2	8
88	The photodissociation dynamics of dichloroethenes at 214 and 220 nm. Journal of Chemical Physics, 1993, 99, 1703-1709.	1.2	19