Jia-Qi Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4174991/publications.pdf

Version: 2024-02-01

		623734	610901
24	587	14	24
papers	citations	h-index	g-index
25	25	25	595
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Synthesis and fungicidal activity of methyl (E)-1-(2-((E)-2-methoxy-1-(methoxyimino)-2-oxoethyl)benzyl)-2-(1-arylidene)hydrazine-1-carboxylates $\hat{a} \in \hat{a} \in \hat{a}$. Molecular Diversity, 2022, 26, 801-813.	3.9	2
2	$1\hat{a}$ €²-OH of ABA and its analogs is a crucial functional group correspondence to seed germination and development of plants. Journal of Molecular Structure, 2022, 1249, 131650.	3.6	2
3	Design, synthesis, and biological activity of sulfoximine derivatives. Journal of Heterocyclic Chemistry, 2022, 59, 729-738.	2.6	4
4	Nanoselenium integrates soil-pepper plant homeostasis by recruiting rhizosphere-beneficial microbiomes and allocating signaling molecule levels under Cd stress. Journal of Hazardous Materials, 2022, 432, 128763.	12.4	28
5	Nanoselenium foliar application enhances biosynthesis of tea leaves in metabolic cycles and associated responsive pathways. Environmental Pollution, 2021, 273, 116503.	7.5	59
6	Nanoselenium transformation and inhibition of cadmium accumulation by regulating the lignin biosynthetic pathway and plant hormone signal transduction in pepper plants. Journal of Nanobiotechnology, 2021, 19, 316.	9.1	29
7	Nanoselenium Enhanced Wheat Resistance to Aphids by Regulating Biosynthesis of DIMBOA and Volatile Components. Journal of Agricultural and Food Chemistry, 2021, 69, 14103-14114.	5.2	26
8	APA <i>n</i> , a Class of ABA Receptor Agonism/Antagonism Switching Probes. Journal of Agricultural and Food Chemistry, 2020, 68, 8524-8534.	5.2	7
9	Nanoselenium Foliar Applications Enhance the Nutrient Quality of Pepper by Activating the Capsaicinoid Synthetic Pathway. Journal of Agricultural and Food Chemistry, 2020, 68, 9888-9895.	5.2	64
10	The application of "plug-in molecules―method in novel strobilurin fungicides screening. RSC Advances, 2020, 10, 42804-42809.	3.6	6
11	TPP-based mitocans: a potent strategy for anticancer drug design. RSC Medicinal Chemistry, 2020, 11, 858-875.	3.9	28
12	Foliar Application of Selenium Nanoparticles on Celery Stimulates Several Nutrient Component Levels by Regulating the α-Linolenic Acid Pathway. ACS Sustainable Chemistry and Engineering, 2020, 8, 10502-10510.	6.7	48
13	Enantioselective one-pot synthesis of 4 <i>H</i> -chromene derivatives catalyzed by a chiral Ni(<scp>ii</scp>) complex. RSC Advances, 2020, 10, 44437-44441.	3.6	5
14	Role of the Ring Methyl Groups in 2′,3′-Benzoabscisic Acid Analogues. Journal of Agricultural and Food Chemistry, 2019, 67, 4995-5007.	5.2	6
15	Synthesis and Fungicidal Activity of (<i>E</i>)â€Methyl 2â€(2â€((1â€cyanoâ€2â€hydrocarbylidenehydrazinyl)methyl)phenyl)â€2â€(methoxyimino)acetates. Pest Manag Science, 2019, 75, 3160-3166.	ge me nt	11
16	A convenient approach to difluoromethylated all-carbon quaternary centers <i>via</i> Ni(<scp>ii</scp>)-catalyzed enantioselective Michael addition. RSC Advances, 2018, 8, 19402-19408.	3.6	6
17	A novel 6-quinoxalinamine-based fluorescent probe for real-time detection of palladium(<scp>ii</scp>) ions in pure water and bio-imaging. New Journal of Chemistry, 2018, 42, 12773-12778.	2.8	18
18	Ni(<scp>ii</scp>)-Catalyzed enantioselective Mukaiyamaâ€"Mannich reaction between silyl enol ethers and cyclic N-sulfonyl α-ketiminoesters. Organic Chemistry Frontiers, 2017, 4, 1858-1862.	4.5	17

#	ARTICLE	IF	CITATION
19	Cu(II)-catalyzed enantioselective 1,3-dipolar cycloaddition of nitrones with $\hat{l}\pm,\hat{l}^2$ -unsaturated acyl phosphonates. Tetrahedron, 2017, 73, 2923-2930.	1.9	13
20	Nickel(II)â€Catalyzed Enantioselective 1,3â€Dipolar Cycloaddition of Nitrones with α,βâ€Unsaturated Acylcarboxylates. European Journal of Organic Chemistry, 2017, 2017, 657-661.	2.4	20
21	Enantioselective Copper(II) $\hat{a} \in C$ atalyzed Conjugate Addition of Indoles to $\hat{i}^2 < i > \hat{a} \in A$ is Substituted Unsaturated Acyl Phosphonates. Advanced Synthesis and Catalysis, 2016, 358, 1011-1016.	4.3	17
22	Asymmetric Hydrogenation of Allylic Alcohols Using Ir–N,P-Complexes. ACS Catalysis, 2016, 6, 8342-8349.	11.2	34
23	Heteroarylidene-tethered bis(oxazoline) copper complexes catalyzed cascade reaction involving asymmetric Friedel–Crafts alkylation/N-hemiacetalization of indoles with β,γ-unsaturated α-ketoester. Tetrahedron, 2015, 71, 3625-3631.	1.9	23
24	Room temperature and solvent-free iridium-catalyzed selective alkylation of anilines with alcohols. Chemical Communications, 2013, 49, 6131.	4.1	113