Rajendran Muthuraj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4174759/publications.pdf

Version: 2024-02-01

623188 940134 14 1,127 16 16 citations g-index h-index papers 16 16 16 1285 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrospun poly(3-hydroxybutyrate)/chicken feather-derived keratin scaffolds: Fabrication, in vitro and in vivo biocompatibility evaluation. Journal of Biomaterials Applications, 2020, 34, 741-752.	1.2	14
2	Crosslinked porous three-dimensional cellulose nanofibers-gelatine biocomposite scaffolds for tissue regeneration. International Journal of Biological Macromolecules, 2020, 164, 1949-1959.	3.6	29
3	Recent Advances in Porous 3D Cellulose Aerogels for Tissue Engineering Applications: A Review. Journal of Composites Science, 2020, 4, 152.	1.4	29
4	Strategies for polymer to polymer recycling from waste: Current trends and opportunities for improving the circular economy of polymers in South America. Current Opinion in Green and Sustainable Chemistry, 2020, 25, 100381.	3.2	37
5	Sustainable thermal insulation biocomposites from rice husk, wheat husk, wood fibers and textile waste fibers: Elaboration and performances evaluation. Industrial Crops and Products, 2019, 135, 238-245.	2.5	160
6	Recent progress in carbon dioxide (CO2) as feedstock for sustainable materials development: Co-polymers and polymer blends. Polymer, 2018, 145, 348-373.	1.8	155
7	Biodegradable compatibilized polymer blends for packaging applications: A literature review. Journal of Applied Polymer Science, 2018, 135, 45726.	1.3	234
8	Carbon Dioxide–Derived Poly(propylene carbonate) as a Matrix for Composites and Nanocomposites: Performances and Applications. Macromolecular Materials and Engineering, 2018, 303, 1800366.	1.7	45
9	Reactive compatibilization and performance evaluation of miscanthus biofiber reinforced poly(hydroxybutyrateâ€coâ€hydroxyvalerate) biocomposites. Journal of Applied Polymer Science, 2017, 134,	1.3	18
10	Biocomposite consisting of miscanthus fiber and biodegradable binary blend matrix: compatibilization and performance evaluation. RSC Advances, 2017, 7, 27538-27548.	1.7	52
11	Mechanical and thermal insulation properties of elium acrylic resin/cellulose nanofiber based composite aerogels. Nano Structures Nano Objects, 2017, 12, 68-76.	1.9	28
12	Biodegradable biocomposites from poly(butylene adipateâ€∢i>coàê€terephthalate) and miscanthus: Preparation, compatibilization, and performance evaluation. Journal of Applied Polymer Science, 2017, 134, 45448.	1.3	42
13	Binary blends of poly(butylene adipate-co-terephthalate) and poly(butylene succinate): A new matrix for biocomposites applications. AIP Conference Proceedings, 2015, , .	0.3	12
14	Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions. Journal of Applied Polymer Science, 2015, 132, .	1.3	93
15	Injection Molded Sustainable Biocomposites From Poly(butylene succinate) Bioplastic and Perennial Grass. ACS Sustainable Chemistry and Engineering, 2015, 3, 2767-2776.	3.2	80
16	Biodegradable Poly(butylene succinate) and Poly(butylene adipate-co-terephthalate) Blends: Reactive Extrusion and Performance Evaluation. Journal of Polymers and the Environment, 2014, 22, 336-349.	2.4	99