Robert J Hijmans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/417427/publications.pdf

Version: 2024-02-01

87 papers

42,268 citations

41 h-index 87 g-index

87 all docs

87 docs citations

times ranked

87

47597 citing authors

#	Article	IF	CITATIONS
1	Potential, attainable, and current levels of global crop diversity. Environmental Research Letters, 2022, 17, 044071.	2.2	5
2	Field Data Collection Methods Strongly Affect Satellite-Based Crop Yield Estimation. Remote Sensing, 2022, 14, 1995.	1.8	5
3	Uniting remote sensing, crop modelling and economics for agricultural risk management. Nature Reviews Earth & Environment, 2021, 2, 140-159.	12.2	88
4	Evaluating the quality of remote sensing products for agricultural index insurance. PLoS ONE, 2021, 16, e0258215.	1.1	13
5	Fertilizer and grain prices constrain food production in sub-Saharan Africa. Nature Food, 2021, 2, 766-772.	6.2	48
6	Seasonal, annual, and spatial variation in cereal prices in Sub-Saharan Africa. Global Food Security, 2020, 26, 100438.	4.0	16
7	The scale dependency of spatial crop species diversity and its relation to temporal diversity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26176-26182.	3.3	21
8	The Female Empowerment Index (FEMI): spatial and temporal variation in women's empowerment in Nigeria. Heliyon, 2020, 6, e03829.	1.4	12
9	The environmental consequences of climate-driven agricultural frontiers. PLoS ONE, 2020, 15, e0228305.	1.1	58
10	Spatial variation in fertilizer prices in Sub-Saharan Africa. PLoS ONE, 2020, 15, e0227764.	1.1	43
11	Satellite-Based Observations Reveal Effects of Weather Variation on Rice Phenology. Remote Sensing, 2020, 12, 1522.	1.8	14
12	The quality and contribution of volunteer collected animal vehicle collision data in ecological research. Ecological Indicators, 2019, 106, 105431.	2.6	11
13	How effective are the protected areas of East Africa?. Global Ecology and Conservation, 2019, 17, e00573.	1.0	44
14	Climate change and geographic shifts in rice production in China. Environmental Research Communications, $2019,1,011008.$	0.9	20
15	Agricultural intensification was associated with crop diversification in India (1947-2014). PLoS ONE, 2019, 14, e0225555.	1.1	18
16	Integrating the Rabinowitz rarity framework with a National Plant Inventory in South Korea. Ecology and Evolution, 2019, 9, 1353-1363.	0.8	14
17	Evaluation of Grain βâ€Glucan Content in Barley Accessions from the USDA National Small Grains Collection. Crop Science, 2019, 59, 659-666.	0.8	2
18	Methods for Spatial Prediction of Crop Yield Potential. Agronomy Journal, 2018, 110, 2322-2330.	0.9	7

#	Article	IF	CITATIONS
19	Identification of high risk areas for avian influenza outbreaks in California using disease distribution models. PLoS ONE, 2018, 13, e0190824.	1.1	24
20	Geographical distribution and diversity of maize (Zea mays L. subsp. mays) races in Mexico. Genetic Resources and Crop Evolution, 2017, 64, 855-865.	0.8	19
21	Metaâ€corridor solutions for climateâ€vulnerable plant species groups in South Korea. Journal of Applied Ecology, 2017, 54, 1742-1754.	1.9	32
22	WorldClim 2: new 1â€km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 2017, 37, 4302-4315.	1.5	8,707
23	Spatio-temporal variation in childhood growth in Nigeria: a comparison of aggregation and interpolation. International Journal of Digital Earth, 2017, 10, 1166-1176.	1.6	5
24	Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLoS ONE, 2017, 12, e0175554.	1.1	260
25	Spatiotemporal Patterns of Field Crop Diversity in the United States, 1870–2012. Agricultural and Environmental Letters, 2016, 1, 160022.	0.8	22
26	Advances in climate models from CMIP3 to CMIP5 do not change predictions of future habitat suitability for California reptiles and amphibians. Climatic Change, 2016, 134, 579-591.	1.7	36
27	Assessing maize genetic erosion. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1.	3.3	20
28	Improving nutrition security through agriculture: an analytical framework based on national food balance sheets to estimate nutritional adequacy of food supplies. Food Security, 2015, 7, 693-707.	2.4	45
29	Multiple sources of uncertainty affect metrics for ranking conservation risk under climate change. Diversity and Distributions, 2015, 21, 111-122.	1.9	39
30	Managing Potato Biodiversity to Cope with Frost Risk in the High Andes: A Modeling Perspective. PLoS ONE, 2014, 9, e81510.	1.1	34
31	Historical distribution of Sundaland's Dipterocarp rainforests at Quaternary glacial maxima. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16790-16795.	3.3	88
32	Multiple lines of evidence for the origin of domesticated chili pepper, <i>Capsicum annuum</i> , in Mexico. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6165-6170.	3.3	203
33	Climate change may have limited effect on global risk of potato late blight. Global Change Biology, 2014, 20, 3621-3631.	4.2	65
34	A metamodelling approach to estimate global <scp><scp>N₂O</scp></scp> emissions from agricultural soils. Global Ecology and Biogeography, 2014, 23, 912-924.	2.7	24
35	Climate change, wine, and conservation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6907-6912.	3.3	571
36	Modelling agricultural nitrous oxide emissions for large regions. Environmental Modelling and Software, 2013, 48, 183-192.	1.9	19

#	Article	IF	CITATIONS
37	Reply to van Leeuwen et al.: Planning for agricultural adaptation to climate change and its consequences for conservation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3053.	3.3	4
38	Alternative biological assumptions strongly influence models of climate change effects on mountain gorillas. Ecosphere, 2013, 4, 1-17.	1.0	33
39	Opportunities for expanding paddy rice production in Laos: spatial predictive modeling using Random Forest. Journal of Land Use Science, 2012, 7, 21-33.	1.0	8
40	Crossâ€validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology, 2012, 93, 679-688.	1.5	466
41	Comment on "Changes in Climatic Water Balance Drive Downhill Shifts in Plant Species' Optimum Elevations― Science, 2011, 334, 177-177.	6.0	9
42	The contribution of rice agriculture and livestock pastoralism to prehistoric methane levels. Holocene, 2011, 21, 743-759.	0.9	194
43	Spectral Signature Generalization and Expansion Can Improve the Accuracy of Satellite Image Classification. PLoS ONE, 2010, 5, e10516.	1.1	21
44	Is the Climate Right for Pleistocene Rewilding? Using Species Distribution Models to Extrapolate Climatic Suitability for Mammals across Continents. PLoS ONE, 2010, 5, e12899.	1.1	39
45	Quantifying the expression of potato genetic diversity in the high Andes through growth analysis and modeling. Field Crops Research, 2010, 119, 135-144.	2.3	28
46	A Geospatial Modelling Approach Integrating Archaeobotany and Genetics to Trace the Origin and Dispersal of Domesticated Plants. PLoS ONE, 2010, 5, e12060.	1.1	51
47	Mapping the global supply and demand structure of rice. Sustainability Science, 2009, 4, 301-313.	2.5	18
48	The influence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology, 2008, 45, 239-247.	1.9	401
49	The effect of climate change on crop wild relatives. Agriculture, Ecosystems and Environment, 2008, 126, 13-23.	2.5	305
50	Effects of sample size on the performance of species distribution models. Diversity and Distributions, 2008, 14, 763-773.	1.9	1,771
51	Climate change adaptation for conservation in Madagascar. Biology Letters, 2008, 4, 590-594.	1.0	123
52	Ecophysiological constraints shape autumn migratory response to climate change in the North American field sparrow. Biology Letters, 2008, 4, 595-598.	1.0	16
53	Aligning Conservation Priorities Across Taxa in Madagascar with High-Resolution Planning Tools. Science, 2008, 320, 222-226.	6.0	484
54	Locating Pleistocene Refugia: Comparing Phylogeographic and Ecological Niche Model Predictions. PLoS ONE, 2007, 2, e563.	1.1	444

#	Article	IF	CITATIONS
55	Geographic Distribution of Stem Rust Resistance in Wheat Landraces. Crop Science, 2007, 47, 1955-1963.	0.8	46
56	Distributional Dynamics of Invasion and Hybridization by Strix spp. in Western North America. Ornithological Monographs, 2007, , 55-66.	1.3	1
57	Geographical and environmental range expansion through polyploidy in wild potatoes (Solanum) Tj ETQq1 1 0.78	4314 rgBT 2.7	lOverlock
58	DISTRIBUTIONAL DYNAMICS OF INVASION AND HYBRIDIZATION BY STRIX SPP. IN WESTERN NORTH AMERICA. Ornithological Monographs, 2007, 63, 55.	1.3	5
59	Novel methods improve prediction of species' distributions from occurrence data. Ecography, 2006, 29, 129-151.	2.1	6,691
60	Phylogeographic Lineages and Species Comparisons in Conservation Analyses: A Case Study of California Herpetofauna. American Naturalist, 2006, 167, 655-666.	1.0	160
61	Geographic Distribution of Common and Dwarf Bunt Resistance in Landraces of Triticum aestivum subsp. aestivum. Crop Science, 2006, 46, 1622-1629.	0.8	38
62	Climate change and the origin of migratory pathways in the Swainson's thrush, Catharus ustulatus. Journal of Biogeography, 2006, 33, 1172-1182.	1.4	106
63	The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 2006, 12, 2272-2281.	4.2	917
64	A comparison of methods for mapping species ranges and species richness. Global Ecology and Biogeography, 2006, 15, 578-587.	2.7	322
65	Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs. Theoretical and Applied Genetics, 2006, 113, 1515-1527.	1.8	106
66	BioGeomancer: Automated Georeferencing to Map the World's Biodiversity Data. PLoS Biology, 2006, 4, e381.	2.6	89
67	A comparison of methods for mapping species ranges and species richness. Global Ecology and Biogeography, 2006, .	2.7	37
68	Simulation of Potato Late Blight in the Andes. I: Modification and Parameterization of the LATEBLIGHT Model. Phytopathology, 2005, 95, 1191-1199.	1.1	44
69	Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 2005, 25, 1965-1978.	1.5	16,568
70	Qualification of a Plant Disease Simulation Model: Performance of the LATEBLIGHT Model Across a Broad Range of Environments. Phytopathology, 2005, 95, 1412-1422.	1.1	33
71	Simulation of Potato Late Blight in the Andes. II: Validation of the LATEBLIGHT Model. Phytopathology, 2005, 95, 1200-1208.	1.1	35
72	AFLP assessment of diversity in sweetpotato from Latin America and the Pacific region: Its implications on the dispersal of the crop. Genetic Resources and Crop Evolution, 2004, 51, 115-120.	0.8	73

#	Article	IF	CITATIONS
73	Wild Potatoes (Solanum section Petota; Solanaceae) of North and Central America. Systematic Botany Monographs, 2004, 68, 1 .	1.2	102
74	The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. International Journal of Geographical Information Science, 2004, 18, 745-767.	2.2	294
75	Title is missing!. Euphytica, 2003, 130, 47-59.	0.6	46
76	The effect of climate change on global potato production. American Journal of Potato Research, 2003, 80, 271-279.	0.5	329
77	A quantitative and constraint-specific method to assess the potential impact of new agricultural technology: the case of frost resistant potato for the Altiplano (Peru and Bolivia). Agricultural Systems, 2003, 76, 895-911.	3.2	43
78	Potato systematics and germplasm collecting, 1989–2000. American Journal of Potato Research, 2001, 78, 237-268.	0.5	120
79	Global distribution of the potato crop. American Journal of Potato Research, 2001, 78, 403-412.	0.5	94
80	Geographic distribution of wild potato species. American Journal of Botany, 2001, 88, 2101-2112.	0.8	239
81	Estimating the global severity of potato late blight with GIS-linked disease forecast models. Plant Pathology, 2000, 49, 697-705.	1.2	111
82	Assessing the Geographic Representativeness of Genebank Collections: the Case of Bolivian Wild Potatoes. Conservation Biology, 2000, 14, 1755-1765.	2.4	95
83	Land Use Intensification and Disintensification in the Upper Cañete Valley, Peru. Human Ecology, 1999, 27, 319-339.	0.7	32
84	Using GIS to check co-ordinates of genebank accessions. Genetic Resources and Crop Evolution, 1999, 46, 291-296.	0.8	66
85	Title is missing!. Genetic Resources and Crop Evolution, 1999, 46, 547-555.	0.8	161
86			

6