
Galina Kurlyandskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4173046/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Giant-magnetoimpedance-based sensitive element as a model for biosensors. Applied Physics Letters, 2003, 82, 3053-3055.	1.5	250
2	Structure and Magnetic Properties of Thin Permalloy Films Near the "Transcritical―State. IEEE Transactions on Magnetics, 2010, 46, 333-336.	1.2	114
3	Magnetic Dynabeads® detection by sensitive element based on giant magnetoimpedance. Biosensors and Bioelectronics, 2005, 20, 1611-1616.	5.3	99
4	Spherical magnetic nanoparticles fabricated by laser target evaporation. AIP Advances, 2013, 3, .	0.6	89
5	Iron oxide nanoparticles fabricated by electric explosion of wire: focus on magnetic nanofluids. AIP Advances, 2012, 2, .	0.6	82
6	Very large magnetoimpedance effect in FeCoNi ferromagnetic tubes with high order magnetic anisotropy. Journal of Applied Physics, 2001, 90, 6280-6286.	1.1	76
7	Magnetosensitive transducers for nondestructive testing operating on the basis of the giant magnetoimpedance effect: A review. Russian Journal of Nondestructive Testing, 2009, 45, 377-398.	0.3	72
8	Giant magnetoimpedance biosensor for ferrogel detection: Model system to evaluate properties of natural tissue. Applied Physics Letters, 2015, 106, .	1.5	71
9	Magnetoimpedance biosensor for Fe3O4 nanoparticle intracellular uptake evaluation. Applied Physics Letters, 2007, 91, .	1.5	66
10	Microwave absorption of nanoscale CoNi powders. Journal of Applied Physics, 2006, 99, 104308.	1.1	65
11	Influence of the preparation procedure on the properties of polyaniline based magnetic composites. European Polymer Journal, 2007, 43, 1333-1346.	2.6	65
12	Field-induced microwave absorption in Fe3O4 nanoparticles and Fe3O4/polyaniline composites synthesized by different methods. Journal of Physics and Chemistry of Solids, 2007, 68, 1527-1532.	1.9	62
13	Giant magnetoimpedance for biosensing: Advantages and shortcomings. Journal of Magnetism and Magnetic Materials, 2009, 321, 659-662.	1.0	59
14	Modelling of magnetoimpedance response of thin film sensitive element in the presence of ferrogel: Next step toward development of biosensor for in-tissue embedded magnetic nanoparticles detection. Biosensors and Bioelectronics, 2018, 117, 366-372.	5.3	58
15	Thin-film magneto-impedance structures with very large sensitivity. Journal of Magnetism and Magnetic Materials, 2016, 400, 321-326.	1.0	56
16	The influence of field- and stress-induced magnetic anisotropy on the magnetoimpedance in nanocrystalline FeCuNbSiB alloys. Journal of Applied Physics, 1998, 83, 6581-6583.	1.1	55
17	GMI detection of magnetic-particle concentration in continuous flow. Sensors and Actuators A: Physical, 2011, 172, 103-108.	2.0	53
18	Frequency dependence of giant magnetoimpedance effect in CuBe/CoFeNi plated wire with different types of magnetic anisotropy. Journal of Applied Physics, 2000, 87, 4822-4824.	1.1	49

#	Article	IF	CITATIONS
19	Sensor Applications of Soft Magnetic Materials Based on Magneto-Impedance, Magneto-Elastic Resonance and Magneto-Electricity. Sensors, 2014, 14, 7602-7624.	2.1	49
20	Magnetite nanoparticles prepared by co-precipitation method in different conditions. Materials Chemistry and Physics, 2015, 161, 243-249.	2.0	48
21	Magnetic actuator based on giant magnetostrictive material Terfenol-D with strain and temperature monitoring using FBG optical sensor. Measurement: Journal of the International Measurement Confederation, 2016, 80, 201-206.	2.5	48
22	FeNi-based magnetoimpedance multilayers: Tailoring of the softness by magnetic spacers. Applied Physics Letters, 2012, 100, .	1.5	47
23	Polyacrylamide Ferrogels with Magnetite or Strontium Hexaferrite: Next Step in the Development of Soft Biomimetic Matter for Biosensor Applications. Sensors, 2018, 18, 257.	2.1	46
24	Surface modified amorphous ribbon based magnetoimpedance biosensor. Biosensors and Bioelectronics, 2007, 22, 2341-2345.	5.3	44
25	Influence of magnetization processes and device geometry on the GMI effect. IEEE Transactions on Magnetics, 2002, 38, 3051-3056.	1.2	42
26	Advantages of nonlinear giant magnetoimpedance for sensor applications. Sensors and Actuators A: Physical, 2003, 106, 234-239.	2.0	42
27	Domain structure and magnetization process of a giant magnetoimpedance geometry FeNi/Cu/FeNi(Cu)FeNi/Cu/FeNi sensitive element. Journal of Physics Condensed Matter, 2004, 16, 6561-6568.	0.7	42
28	Polyacrylamide ferrogels with embedded maghemite nanoparticles for biomedical engineering. Results in Physics, 2017, 7, 3624-3633.	2.0	42
29	Tailoring the magnetic anisotropy of thin film permalloy microstrips by combined shape and induced anisotropies. European Physical Journal B, 2013, 86, 1.	0.6	41
30	Flexible thin film magnetoimpedance sensors. Journal of Magnetism and Magnetic Materials, 2016, 415, 91-96.	1.0	41
31	Nanostructured materials for magnetic biosensing. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1494-1506.	1.1	41
32	Spherical magnetic nanoparticles fabricated by electric explosion of wire. AIP Advances, 2011, 1, 042122.	0.6	40
33	Mechanical, Electrical and Magnetic Properties of Ferrogels with Embedded Iron Oxide Nanoparticles Obtained by Laser Target Evaporation: Focus on Multifunctional Biosensor Applications. Sensors, 2018, 18, 872.	2.1	40
34	Modification of the "Transcritical―state in Ni75Fe16Cu5Mo4 films produced by RF sputtering. Technical Physics, 2004, 49, 868-871.	0.2	39
35	Giant magnetic impedance of wires with a thin magnetic coating. Physics of Metals and Metallography, 2011, 111, 133-154.	0.3	39
36	Magneto-impedance effect in nanostructured soft ferromagnetic alloys. Nanotechnology, 2003, 14, 231-238.	1.3	38

#	Article	IF	CITATIONS
37	Advanced materials for drug delivery and biosensors based on magnetic label detection. Materials Science and Engineering C, 2007, 27, 495-503.	3.8	38
38	Magnetoimpedance effect in CoFeNi plated wire with ac field annealing destabilized domain structure. Journal of Applied Physics, 1999, 85, 5438-5440.	1.1	37
39	Effect of induced magnetic anisotropy and domain structure features on magnetoimpedance in stress annealed Co-rich amorphous ribbons. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 259-261.	1.0	37
40	Nanoparticles for magnetic biosensing systems. Journal of Magnetism and Magnetic Materials, 2017, 431, 249-254.	1.0	37
41	Giant magnetoimpedance strip and coil sensors. Sensors and Actuators A: Physical, 2001, 91, 116-119.	2.0	36
42	Magnetoimpedance of sandwiched films: experimental results and numerical calculations. Journal of Magnetism and Magnetic Materials, 2002, 242-245, 291-293.	1.0	36
43	Giant magnetoimpedance: A label-free option for surface effect monitoring. Journal of Applied Physics, 2007, 101, 054505.	1.1	36
44	Nanostructured giant magneto-impedance multilayers deposited onto flexible substrates for low pressure sensing. Nanoscale Research Letters, 2012, 7, 230.	3.1	34
45	Influence of geometrical parameters on the giant magnetoimpedance response in amorphous ribbons. Journal of Magnetism and Magnetic Materials, 2000, 215-216, 740-742.	1.0	33
46	FeNi-based magnetic layered nanostructures: Magnetic properties and giant magnetoimpedance. Journal of Applied Physics, 2010, 107, .	1.1	32
47	Characterization of nanosized spinel ferrite powders synthesized by coprecipitation and autocombustion method. Journal of Alloys and Compounds, 2010, 495, 509-512.	2.8	32
48	Magnetic Properties and Giant Magnetoimpedance of FeNi-Based Nanostructured Multilayers With Variable Thickness of the Central Cu Lead. IEEE Transactions on Magnetics, 2011, 47, 3328-3331.	1.2	31
49	The Contribution of Magnetic Nanoparticles to Ferrogel Biophysical Properties. Nanomaterials, 2019, 9, 232.	1.9	30
50	Nanostructured Magnetoimpedance Multilayers. IEEE Transactions on Magnetics, 2012, 48, 1375-1380.	1.2	29
51	Structure, magnetic and microwave properties of FeNi nanoparticles obtained by electric explosion of wire. Journal of Alloys and Compounds, 2014, 615, S231-S235.	2.8	29
52	Frequency dependence of the magnetoimpedance in nanocrystalline FeCuNbSiB with high transverse stress-induced magnetic anisotropy. IEEE Transactions on Magnetics, 1999, 35, 3358-3360.	1.2	28
53	Non-linear giant magnetoimpedance. Journal of Magnetism and Magnetic Materials, 2002, 240, 206-208.	1.0	28
54	Ferromagnetic resonance in FeCoNi electroplated wires. Journal of Applied Physics, 2003, 94, 1868-1872.	1.1	28

#	Article	IF	CITATIONS
55	Carbon Deposition from Aromatic Solvents onto Active Intact 3d Metal Surface at Ambient Conditions. Langmuir, 2014, 30, 3243-3253.	1.6	28
56	Polyacrylamide Ferrogels with Ni Nanowires. Materials, 2019, 12, 2582.	1.3	28
57	Permalloy-Based Thin Film Structures: Magnetic Properties and the Giant Magnetoimpedance Effect in the Temperature Range Important for Biomedical Applications. Sensors, 2017, 17, 1900.	2.1	27
58	Ferrogels based on entrapped metallic iron nanoparticles in a polyacrylamide network: extended Derjaguin–Landau–Verwey–Overbeek consideration, interfacial interactions and magnetodeformation. Soft Matter, 2017, 13, 3359-3372.	1.2	26
59	Laser Target Evaporation Fe ₂ O ₃ Nanoparticles for Water-Based Ferrofluids for Biomedical Applications. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	25
60	Water-Based Suspensions of Iron Oxide Nanoparticles with Electrostatic or Steric Stabilization by Chitosan: Fabrication, Characterization and Biocompatibility. Sensors, 2017, 17, 2605.	2.1	25
61	High Performance Magnetoimpedance in FeNi/Ti Nanostructured Multilayers with Opened Magnetic Flux. Journal of Nanoscience and Nanotechnology, 2012, 12, 7496-7500.	0.9	24
62	GMI in Nanostructured FeNi/Ti Multilayers With Different Thicknesses of the Magnetic Layers. IEEE Transactions on Magnetics, 2013, 49, 18-21.	1.2	24
63	Thermo-sensitive spin valve based on layered artificial ferrimagnet. Applied Physics Letters, 2016, 108, .	1.5	22
64	Influence of the Size and Structural Factors on the Magnetism of Multilayer Films Based on 3d and 4f Metals. Physics of Metals and Metallography, 2017, 118, 1263-1299.	0.3	22
65	Fe nanoparticles produced by electric explosion of wire for new generation of magneto-rheological fluids. Smart Materials and Structures, 2018, 27, 045011.	1.8	22
66	Magnetoimpedance of thin film meander with composite coating layer containing Ni nanoparticles. Journal of Applied Physics, 2014, 115, .	1.1	21
67	Tailoring functional properties of Ni nanoparticles-acrylic copolymer composites with different concentrations of magnetic filler. Journal of Applied Physics, 2015, 117, .	1.1	21
68	FeNi-based flat magnetoimpedance nanostructures with open magnetic flux: New topological approaches. Journal of Magnetism and Magnetic Materials, 2015, 383, 220-225.	1.0	21
69	Magnetoimpedance in Symmetric and Non-Symmetric Nanostructured Multilayers: A Theoretical Study. Sensors, 2019, 19, 1761.	2.1	21
70	Differences in the Magneto-Impedance of FeNi/Cu/FeNi Multilayers With Open and Closed Magnetic Path. IEEE Transactions on Magnetics, 2010, 46, 658-661.	1.2	20
71	Microwave resonant and zero-field absorption study of pure and doped ferrite nanoparticles. Journal of Physics and Chemistry of Solids, 2011, 72, 276-285.	1.9	20
72	In situ modification of Fe and Ni magnetic nanopowders produced by the electrical explosion of wire. Journal of Alloys and Compounds, 2014, 586, S483-S488.	2.8	20

#	Article	IF	CITATIONS
73	Longitudinal magnetic bistability of electroplated wires. Journal of Magnetism and Magnetic Materials, 2002, 249, 34-38.	1.0	19
74	Microwave Resonant and Zero-Field Absorption Study of Doped Magnetite Prepared by a Co-Precipitation Method. Molecules, 2014, 19, 8387-8401.	1.7	19
75	Equivalent Magnetic Noise of Micro-Patterned Multilayer Thin Films Based GMI Microsensor. IEEE Sensors Journal, 2015, 15, 6707-6714.	2.4	19
76	Specific loss power measurements by calorimetric and thermal methods on γ-Fe2O3 nanoparticles for magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 2019, 473, 403-409.	1.0	19
77	Magnetoimpedance Thin Film Sensor for Detecting of Stray Fields of Magnetic Particles in Blood Vessel. Sensors, 2021, 21, 3621.	2.1	19
78	Functional magnetic ferrogels: From biosensors to regenerative medicine. AIP Advances, 2020, 10, .	0.6	19
79	Study of the effect of the deposition rate and seed layers on structure and magnetic properties of magnetron sputtered FeNi films. Vacuum, 2015, 119, 245-249.	1.6	18
80	Comparative study of magnetic and magnetoimpedance properties of CoFeSiB-based amorphous ribbons of the same geometry with Mo or W additions. Journal of Alloys and Compounds, 2017, 693, 767-776.	2.8	18
81	Magnetic domains and transverse induced anisotropy in magnetically soft CoFeB amorphous thin films. IEEE Transactions on Magnetics, 1998, 34, 1153-1155.	1.2	17
82	High-frequency magnetoimpedance in multilayer thin films with longitudinal and transverse anisotropy. Journal of Magnetism and Magnetic Materials, 2008, 320, e954-e957.	1.0	17
83	Fe ₄₅ Ni ₅₅ Magnetic Nanoparticles Obtained by Electric Explosion of Wire for the Development of Functional Composites. IEEE Magnetics Letters, 2015, 6, 1-4.	0.6	17
84	Exchange biased FeNi/FeMn bilayers with coercivity and switching field enhanced by FeMn surface oxidation. AIP Advances, 2013, 3, .	0.6	16
85	Magnetic impedance of structured film meanders in the presence of magnetic micro- and nanoparticles. Technical Physics, 2014, 59, 230-236.	0.2	16
86	Water based suspensions of iron oxide obtained by laser target evaporation for biomedical applications. Journal of Magnetism and Magnetic Materials, 2016, 415, 35-38.	1.0	16
87	Thin-Film Magnetoimpedance Structures Onto Flexible Substrates as Deformation Sensors. IEEE Transactions on Magnetics, 2017, 53, 1-5.	1.2	16
88	Magnetoimpedance and Stress-Impedance Effects in Amorphous CoFeSiB Ribbons at Elevated Temperatures. Materials, 2020, 13, 3216.	1.3	16
89	Frequency dependence of hysteretic magnetoimpedance in CoFeMoSiB amorphous ribbons. Journal of Magnetism and Magnetic Materials, 2000, 215-216, 425-427.	1.0	15
90	Structural Peculiarities and Magnetic Properties of FeNi Films and FeNi/Ti-Based Magnetic Nanostructures. IEEE Transactions on Magnetics, 2012, 48, 1605-1608.	1.2	15

#	Article	IF	CITATIONS
91	Induced magnetic anisotropy features in FeCrSiBNbCu nanocrystalline alloy: Role of stress distribution proven by direct X-ray measurements. Journal of Alloys and Compounds, 2013, 566, 31-36.	2.8	15
92	Magnetoimpedance Sensitive Elements Based on CuBe/FeCoNi Electroplated Wires in Single and Double Wire Configurations. IEEE Transactions on Magnetics, 2017, 53, 1-15.	1.2	15
93	Magnetoimpedance Effect in the Ribbon-Based Patterned Soft Ferromagnetic Meander-Shaped Elements for Sensor Application. Sensors, 2019, 19, 2468.	2.1	15
94	Spin-valve structures with Co-Tb-based multilayers. IEEE Transactions on Magnetics, 2002, 38, 2782-2784.	1.2	14
95	Giant magnetic impedance of film nanostructures adapted for biodetection. Russian Physics Journal, 2009, 52, 769-776.	0.2	14
96	High-Frequency Magnetoimpedance Response of Thin-Film Microstructures Using Coplanar Waveguides. IEEE Transactions on Magnetics, 2015, 51, 1-4.	1.2	14
97	Exchange bias in sputtered FeNi/FeMn systems: Effect of short low-temperature heat treatments. Journal of Magnetism and Magnetic Materials, 2016, 402, 49-54.	1.0	14
98	Nonlinear Magnetoimpedance Effect in FeCoNi Ferromagnetic Tubes. Chinese Physics Letters, 2001, 18, 1268-1270.	1.3	13
99	Domain wall permeability limit for the giant magnetoimpedance effect. Journal of Applied Physics, 2002, 91, 7451.	1.1	13
100	Wide-angle magnetoimpedance field sensor based on two crossed amorphous ribbons. Sensors and Actuators A: Physical, 2008, 142, 496-502.	2.0	13
101	Effect of Ti seed and spacer layers on structure and magnetic properties of FeNi thin films and FeNi-based multilayers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 188, 102-105.	1.7	13
102	System based on a ZVA-67 vector network analyzer for measuring high-frequency parameters of magnetic film structures. Russian Journal of Nondestructive Testing, 2017, 53, 204-212.	0.3	13
103	Effects of Constant Magnetic Field to the Proliferation Rate of Human Fibroblasts Grown onto Different Substrates: Tissue Culture Polystyrene, Polyacrylamide Hydrogel and Ferrogels γ-Fe2O3 Magnetic Nanoparticles. Nanomaterials, 2020, 10, 1697.	1.9	13
104	Very high GMI effect in commercial Vitrovac® amorphous ribbons. Sensors and Actuators A: Physical, 2003, 106, 195-198.	2.0	12
105	Influence of Residual Stresses and Their Relaxation on Giant Magnetoimpedance of CoFeSiB Metallic Glasses. Japanese Journal of Applied Physics, 2005, 44, 4939-4944.	0.8	12
106	Magnetoimpedance and magnetization processes of FeCoNi electroplated tubes. Journal of Applied Physics, 2009, 105, .	1.1	12
107	Multilayer Magnetoimpedance Sensor for Nondestructive Testing. Sensor Letters, 2009, 7, 374-377.	0.4	12
108	A Simple Model of the Magnetoresistance Contribution to the Magnetoimpedance Effect in Thin Films. Physica Status Solidi A, 1999, 171, R3-R4.	1.7	11

#	Article	IF	CITATIONS
109	Giant Magnetoimpedance Effect in Surface Modified CoFeMoSiB Amorphous Ribbons. Chinese Physics Letters, 2003, 20, 2246-2249.	1.3	11
110	Large internal strains in very small iron oxide nanoparticles fabricated by spark discharge with electrodynamic acceleration of plasma jumpers. Vacuum, 2016, 132, 1-4.	1.6	11
111	Magnetoimpedance of FeNi-based asymmetric sensitive elements. Journal of Magnetism and Magnetic Materials, 2016, 415, 87-90.	1.0	11
112	Ferrogels Ultrasonography for Biomedical Applications. Sensors, 2019, 19, 3959.	2.1	11
113	Magnetic Properties of Iron Oxide Nanoparticles Do Not Essentially Contribute to Ferrogel Biocompatibility. Nanomaterials, 2021, 11, 1041.	1.9	11
114	Longitudinal and Transverse Magnetoimpedance in FeNi/Cu/FeNi Multilayers With Longitudinal and Transverse Anisotropy. IEEE Transactions on Magnetics, 2008, 44, 3863-3866.	1.2	10
115	Effect of phase separation in an Fe20Ni80/Fe50Mn50 structure with exchange coupling. Physics of Metals and Metallography, 2014, 115, 856-863.	0.3	10
116	Comparative study of magnetic, microwave properties and giant magnetoimpedance of FeNi-based multilayers with different structure. Journal of Alloys and Compounds, 2014, 615, S296-S299.	2.8	10
117	Temperature dependence of microwave absorption phenomena in single and biphase soft magnetic microwires. Journal of Magnetism and Magnetic Materials, 2014, 368, 126-132.	1.0	10
118	Tuning the structure and magnetic softness of thin permalloy films by variations in the thickness of titanium seed layer. Materials Letters, 2015, 152, 159-162.	1.3	10
119	Exchange bias in FeNi/FeMn/FeNi multilayers. Superlattices and Microstructures, 2015, 83, 216-223.	1.4	10
120	Structure, magnetic and microwave properties of FeNi invar nanoparticles obtained by electrical explosion of wire in different preparation conditions. Journal of Physics and Chemistry of Solids, 2016, 98, 255-262.	1.9	10
121	Magnetoimpedance Properties of Amorphous CoFeSiB Wires in a Wide Frequency Range: Focus on Sensor Applications. Russian Journal of Nondestructive Testing, 2018, 54, 717-725.	0.3	10
122	Magnetic Nanoparticles as a Strong Contributor to the Biocompatibility of Ferrogels. Physics of Metals and Metallography, 2020, 121, 299-304.	0.3	10
123	Nanocrystallization in FINEMET-Type Fe73.5Nb3Cu1Si13.5B9 and Fe72.5Nb1.5Mo2Cu1.1Si14.2B8.7 Thin Films. Materials, 2020, 13, 348.	1.3	10
124	The thermomechanical treatment of an amorphous Co-based alloy with a low Curie temperature. Journal of Magnetism and Magnetic Materials, 1996, 160, 307-308.	1.0	9
125	MOKE study of Co/Ti/(Gd–Co) multilayers near the magnetic compensation state. Journal of Alloys and Compounds, 2006, 419, 25-31.	2.8	9
126	Non-linear magnetoimpedance in amorphous ribbons: Large asymmetries and angular dependence. Sensors and Actuators A: Physical, 2006, 129, 275-278.	2.0	9

#	Article	IF	CITATIONS
127	Structural Peculiarities and Magnetic Properties of Nanoscale Terbium in Tb/Ti and Tb/Si Multilayers. Chinese Physics Letters, 2006, 23, 196-199.	1.3	9
128	Low field microwave absorption and magnetization process in CoFeNi electroplated wires. Chinese Physics B, 2008, 17, 1430-1435.	0.7	9
129	Structure and magnetic properties of nanostructured GdTb thin films. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2273-2276.	0.8	9
130	Comparison of Micro-Fabrication Routes for Magneto-Impedance Elements: Lift-Off and Wet-Etching. IEEE Transactions on Magnetics, 2012, 48, 1601-1604.	1.2	9
131	Impedance and magnetic properties of CoFeCrSiB amorphous ribbons near the curie point. Technical Physics, 2013, 58, 774-777.	0.2	9
132	Magnetization processes and magnetic domain structure in weakly coupled GdCo/Si/Co trilayers. Journal of Alloys and Compounds, 2014, 615, S366-S370.	2.8	9
133	Thickness-dependent Curie temperature in ferrimagnetic Gd–Co/Ti multilayers. Superlattices and Microstructures, 2016, 90, 242-246.	1.4	9
134	EFFECT OF THE POLYACRYLAMIDE FERROGEL ELASTICITY ON THE CELL ADHESIVENESS TO MAGNETIC COMPOSITE. Journal of Mechanics in Medicine and Biology, 2018, 18, 1850060.	0.3	9
135	Spin-valve magnetoresistive structures based on Co/Tb multilayer films. Technical Physics, 2002, 47, 987-990.	0.2	8
136	Core-Shell Fine Structure of FeNi Magnetic Nanoparticles Produced by Electrical Explosion of Wire. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	8
137	Magnetoimpedance effect in the FeNi/Ti-based multilayered structure: A pressure sensor prototype. AIP Conference Proceedings, 2016, , .	0.3	8
138	Total reflection x-ray fluorescence spectroscopy as a tool for evaluation of iron concentration in ferrofluids and yeast samples. Journal of Magnetism and Magnetic Materials, 2016, 415, 39-44.	1.0	8
139	Influence of the Parameters of Permalloy-Based Multilayer Film Structures on the Sensitivity of Magnetic Impedance Effect. Physics of Metals and Metallography, 2021, 122, 223-229.	0.3	8
140	A Model for the Magnetoimpedance Effect in Non-Symmetric Nanostructured Multilayered Films with Ferrogel Coverings. Sensors, 2021, 21, 5151.	2.1	8
141	Giant Magnetoimpedance of Electrochemically Surface Modified Co-Based Amorphous Ribbons. IEEE Transactions on Magnetics, 2008, 44, 4476-4479.	1.2	7
142	Influence of Temperature on Structure and Magnetic Properties of Exchange Coupled TbCo/FeNi Bilayers. Journal of Nanoscience and Nanotechnology, 2012, 12, 7566-7570.	0.9	7
143	Temperature Dependences of Magnetoimpedance of Nanocrystalline Fe-Based Ribbons. Journal of Nanoscience and Nanotechnology, 2012, 12, 7446-7450.	0.9	7
144	The Influence of Si on Magnetic and Magneto-Optical Properties of Co/Si/Co Thin-Film Systems. Solid State Phenomena, 2015, 233-234, 653-656.	0.3	7

#	Article	IF	CITATIONS
145	Magnetic properties and magnetoimpedance of short CuBe/CoFeNi electroplated microtubes. Sensors and Actuators A: Physical, 2016, 248, 155-161.	2.0	7
146	Structural and Magnetic Properties of Ni0.8Fe0.2/Ti Nanoscale Multilayers. Nanomaterials, 2018, 8, 780.	1.9	7
147	Flory–Huggins Parameters of Guar Gum, Xanthan Gum, Agarose, and Gellan Gum in Aqueous Solutions. Polymer Science - Series A, 2019, 61, 29-38.	0.4	7
148	Effect of Heat Treatment on the Magnetoimpedance of Soft Magnetic Co68.5Fe4Si15B12.5 Amorphous Ribbons. Physics of Metals and Metallography, 2020, 121, 28-31.	0.3	7
149	Amorphous FeCoCrSiB Ribbons with Tailored Anisotropy for the Development of Magnetic Elements for High Frequency Applications. Materials, 2022, 15, 4160.	1.3	7
150	The magnetoresistance contribution to the total magnetoimpedance of thin films: a simple model and experimental basis. Journal of Magnetism and Magnetic Materials, 2000, 215-216, 516-518.	1.0	6
151	Magnetostriction Dependence of the Relaxation Frequency in the Magnetoimpedance Effect for Amorphous and Nanocrystalline Ribbons. Chinese Physics Letters, 2002, 19, 1870-1873.	1.3	6
152	Magnetoimpedance simulations in wires and tubes. Journal of Magnetism and Magnetic Materials, 2002, 249, 319-323.	1.0	6
153	Magnetoimpedance effect in Co-rich metallic glasses. Journal of Magnetism and Magnetic Materials, 2003, 258-259, 183-188.	1.0	6
154	Magnetic properties of amorphous thin films deposited by de-focused pulsed laser ablation. Nanotechnology, 2003, 14, 1246-1250.	1.3	6
155	The effect of the additional biasing on the switching process in pseudo spin-valve structure. Vacuum, 2007, 81, 1012-1015.	1.6	6
156	Structure and Electrical Resistivity of Sputtered Tb/Ti and Tb/Si Magnetic Multilayers. IEEE Transactions on Magnetics, 2010, 46, 1515-1518.	1.2	6
157	Temperature dependence of the magnetic properties and magnetoimpedance of nanocrystalline Fe73.5Si16.5B6Nb3Cu1 ribbons. Technical Physics, 2011, 56, 395-399.	0.2	6
158	Structure and Magnetic Properties of FeNi/Ti Multilayered Films Grown by Magnetron Sputtering. Solid State Phenomena, 0, 233-234, 591-594.	0.3	6
159	Magneto-inductive heating of water-based iron oxide ferrofluids. AIP Conference Proceedings, 2016, , .	0.3	6
160	Magnetoimpedance effect in multilayered permalloy structure with different magnetostriction: Small-pressure sensor. AIP Conference Proceedings, 2017, , .	0.3	6
161	Coil-to-helix transition of gellan in dilute solutions is a two-step process. Food Hydrocolloids, 2018, 74, 108-114.	5.6	6
162	Ferromagnetic Resonance in Electroplated CuBe/FeCoNi and Amorphous CoFeSiB Wires. IEEE Transactions on Magnetics, 2020, 56, 1-10.	1.2	6

#	Article	IF	CITATIONS
163	Giant magneto-impedance effect in stress-annealed amorphous ribbons. European Physical Journal Special Topics, 1998, 08, Pr2-143-Pr2-146.	0.2	6
164	Pulsed laser deposition of amorphous soft magnetic thin films for sensor applications. Journal of Non-Crystalline Solids, 2003, 329, 8-12.	1.5	5
165	GMI sensitive element based on commercial Vitrovac® amorphous ribbon. Sensors and Actuators A: Physical, 2004, 110, 228-231.	2.0	5
166	Domain structure, magnetic properties, and giant magnetoimpedance of FeNi/Tiâ€based multilayers. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2269-2272.	0.8	5
167	Nanostructured Magnetoimpedance Multilayers with Different Thickness of FeNi Components. Solid State Phenomena, 0, 215, 342-347.	0.3	5
168	Tailoring the Exchange Bias in FeNi/FeMn Bilayers by Heat Treatment and FeMn Surface Oxidation. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	5
169	Magneto-Optical Sensor Based on Fiber Bragg Gratings and a Magnetostrictive Material. Key Engineering Materials, 2015, 644, 232-235.	0.4	5
170	Computer-aided inspection center for magnetoimpedance spectroscopy. Russian Journal of Nondestructive Testing, 2016, 52, 647-652.	0.3	5
171	Magnetic Materials for Thin Film Based Magnetoimpedance Biosensing. Physics of Metals and Metallography, 2019, 120, 1243-1251.	0.3	5
172	Load Matching for Giant Magnetoimpedance Sensor in Coaxial Configuration. Key Engineering Materials, 2019, 826, 19-24.	0.4	5
173	The study of magnetic permeability and magnetoimpedance: Effect of ferromagnetic alloy characteristics. AIP Conference Proceedings, 2020, , .	0.3	5
174	Peculiarities of ferrimagnetism of Gd/Co multilayers. Journal of Alloys and Compounds, 2001, 327, 5-10.	2.8	4
175	Synthesis and characterisation of electrodeposited Cu90Co10 thin film. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 85-87.	1.0	4
176	Effect of the layer thickness on the magnetic properties and structure of terbium in (Tb/Ti)n and (Tb/Si)n multilayer films. Technical Physics, 2005, 50, 914-917.	0.2	4
177	Giant Magnetoimpedance for Biosensing in Drug Delivery. AIP Conference Proceedings, 2008, , .	0.3	4
178	A sensitive element based on the giant magnetoimpedance effect for detecting stray fields. Russian Journal of Nondestructive Testing, 2009, 45, 595-603.	0.3	4
179	Spin valves based on amorphous ferrimagnetic Gd–Co films. Physics of Metals and Metallography, 2016, 117, 876-882.	0.3	4
180	Multi-Step Magnetization Process of Gd-Co/Co/Cu/Co Thermo-Sensitive Spin Valves. Electronics (Switzerland), 2018, 7, 351.	1.8	4

#	Article	IF	CITATIONS
181	Magnetic Properties and the Giant Magnetoimpedance of Amorphous Co-Based Wires with a Carbon Coating. Physics of Metals and Metallography, 2018, 119, 324-331.	0.3	4
182	Influence of uniform magnetic field on elastic modulus in polyacrylamide ferrogels with embedded nickel nanoparticles. Journal of Physics: Conference Series, 2019, 1389, 012059.	0.3	4
183	Temperature Dependence of Magnetoimpedance Effect of a Composite Wire with Induced Magnetic Anisotropy. Physics of Metals and Metallography, 2020, 121, 429-433.	0.3	4
184	Magnetic Nanoparticles Obtained by Electrophysical Technique: Focus on Biomedical Applications. Physics of the Solid State, 2021, 63, 1447-1461.	0.2	4
185	Adhesive and Magnetic Properties of Polyvinyl Butyral Composites with Embedded Metallic Nanoparticles. Sensors, 2021, 21, 8311.	2.1	4
186	Influence of Various Heat Treatments on Giant Magnetoimpedance Effect in Nanocrystalline FeSiBNbCu Ribbons. Textures and Microstructures, 1999, 32, 269-279.	0.2	3
187	Ferrimagnetic properties of Co/(Gd–Co) multilayers. Journal of Magnetism and Magnetic Materials, 2006, 304, e703-e705.	1.0	3
188	Magnetic properties of electroplated wires coated by ferrofluid. Journal of Magnetism and Magnetic Materials, 2006, 300, e55-e58.	1.0	3
189	Magnetic transition in Co/(Gd–Co) multilayers. Journal of Magnetism and Magnetic Materials, 2008, 320, e734-e738.	1.0	3
190	Induced magnetic phase transitions in GdCo/Co-type multilayer films. Physics of the Solid State, 2008, 50, 1481-1486.	0.2	3
191	Magnetic properties and the magnetoimpedance effect of nanostructured Fe73.5Si16.5B6Nb3Cu1 ribbons with induced magnetic anisotropy. Bulletin of the Russian Academy of Sciences: Physics, 2010, 74, 1466-1468.	0.1	3
192	Magnetoresistance in nanostructured Tb/Ti and Tb/Si multilayers. Journal of Applied Physics, 2011, 109, 023914.	1.1	3
193	Structure and magnetic properties of FeNi/Ti sputtered multilayers. EPJ Web of Conferences, 2013, 40, 17002.	0.1	3
194	Magnetic Properties and Magnetic Entropy Change in Gd/Ti Multilayers. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	3
195	Magnetoimpedance of Amorphous Ferromagnetic CoFeSiB Ribbons in the Wide Temperature Range. Solid State Phenomena, 2014, 215, 337-341.	0.3	3
196	Magnetoimpedance of Amorphous Ribbons with Polymer Covering. Solid State Phenomena, 2014, 215, 325-330.	0.3	3
197	Biocompatible Ferrofluids With Iron Oxide Nanoparticles Fabricated by Laser Target Evaporation. IEEE Magnetics Letters, 2015, 6, 1-4.	0.6	3
198	Surface Modified Ni Nanoparticles Produced by the Electrical Explosion of Wire. Solid State Phenomena, 2015, 233-234, 513-516.	0.3	3

#	Article	IF	CITATIONS
199	Surface Modification of Thin Iron Films in Aromatic Solvents at Ambient Conditions. Solid State Phenomena, 2015, 233-234, 657-661.	0.3	3
200	Bimagnetic Microwires, Magnetic Properties, and High-Frequency Behavior. Springer Series in Materials Science, 2016, , 279-310.	0.4	3
201	Magnetoimpedance Effect in CoFeMoSiB As-Quenched and Surface Modified Amorphous Ribbons in the Presence of Igon Oxide Nanoparticles of Water-Based Ferrofluid. Journal of Sensors, 2017, 2017, 1-9.	0.6	3
202	Heterogeneity of population of microorganisms grown in presence of iron oxide maghemite nanoparticles. EPJ Web of Conferences, 2018, 185, 10002.	0.1	3
203	Magnetic and Microwave Properties of Carbon-Coated Co- and Fe-Based Amorphous Wires. IEEE Magnetics Letters, 2018, 9, 1-5.	0.6	3
204	Magnetic properties and giant magnetoimpedance of surface modified Co-based amorphous ribbons with carbon covering. EPJ Web of Conferences, 2018, 185, 10001.	0.1	3
205	Thickness Dependence of Magnetic Properties of Tb–Co/Ti and Tb–Co/Si Multilayers. Physics of Metals and Metallography, 2019, 120, 1260-1265.	0.3	3
206	Angular Dependence of the Ferromagnetic Resonance Parameters of [Ti/FeNi]6/Ti/Cu/Ti/[FeNi/Ti]6 Nanostructured Multilayered Elements in the Wide Frequency Range. Nanomaterials, 2020, 10, 433.	1.9	3
207	Magnetic and Microwave Properties of FeNi Thin Films of Different Thicknesses Deposited Onto Cyclo Olefin Copolymer Flexible Substrates. IEEE Transactions on Magnetics, 2022, 58, 1-5.	1.2	3
208	Magnetoimpedance of Periodic Partly Profiled Multilayer Film Structures. Physics of Metals and Metallography, 2021, 122, 755-760.	0.3	3
209	GMI-Detection of a Magnetic Composite Imitating a Blood Vessel Clot. Russian Physics Journal, 2022, 64, 1880-1885.	0.2	3
210	The properties of Co–Cu melt-spun ribbons and thin films: similarity and difference. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 115-117.	1.0	2
211	Magnetic compensation state peculiarities in [Gd-Co/X]n layered films. Physics of Metals and Metallography, 2006, 101, S81-S83.	0.3	2
212	Coupling between Co and Gd–Co layers separated by nonmagnetic spacers. Physica B: Condensed Matter, 2007, 396, 113-116.	1.3	2
213	Magnetic properties and the giant magnetic impedance of amorphous ribbons of an FeCoCrSiB alloy after small plastic deformation. Physics of Metals and Metallography, 2008, 106, 357-363.	0.3	2
214	Magnetic properties and huge magnetic impedance of permalloy/ copper/permalloy film elements. Russian Physics Journal, 2009, 52, 1092-1097.	0.2	2
215	Structure evolution and magnetic properties of annealed nanoscale Gd/Ti multilayers. EPJ Web of Conferences, 2013, 40, 08005.	0.1	2
216	Influence of Bi on the magnetic and magneto-optical properties of Co/Bi/Co and Bi/Co thin-film systems. Japanese Journal of Applied Physics, 2016, 55, 07MF01.	0.8	2

#	Article	IF	CITATIONS
	Magnetic Dichroism in the Reflectivity of Linearly Polarized Synchrotron Radiation from a Ti(10) Tj ETQq1 1 0.		
217	802-810.	0.2	2
218	Detecting the Total Stray Fields of Ferrogel Nanoparticles Using a Prototype Magnetoimpedance Sensor: Modeling and Experiment. Bulletin of the Russian Academy of Sciences: Physics, 2019, 83, 906-908.	0.1	2
219	Changes in morphotype in the population of E.coli in the presence of metal containing nanoparticles. Journal of Physics: Conference Series, 2019, 1389, 012074.	0.3	2
220	Modeling of magnetoimpedance effect in nanostructured multilayered films. Journal of Physics: Conference Series, 2019, 1389, 012132.	0.3	2
221	Magnetic Properties and High-Frequency Impedance of Nanocrystalline FeSiBNbCu Ribbons in a 300 to 723 K Temperature Range. Physics of Metals and Metallography, 2020, 121, 949-954.	0.3	2
222	Measurement of the Parameters of Ferromagnetic Microwires in a Frequency Range from 0.1 to 20 GHz. Inorganic Materials: Applied Research, 2020, 11, 181-187.	0.1	2
223	Structure, Magnetic Properties and Magnetic Impedance of Fast Quenched Ribbons of Alloys Based on FINEMET in the Initial State and After Heat Treatment. Physics of Metals and Metallography, 2020, 121, 961-967.	0.3	2
224	Magnetoimpedance Based Non-Oriented Field Sensor. Sensor Letters, 2007, 5, 180-184.	0.4	2
225	Magnetoimpedance Sensor for Flat Ferromagnetic Body Detection. Sensor Letters, 2009, 7, 1147-1155.	0.4	2
226	Features of the sperimagnetic structure of TbCo-based multilayers. AIP Conference Proceedings, 2020,	0.3	2
227	Giant magnetoimpedance in the ferromagnetic amorphous alloys. AIP Conference Proceedings, 2020, , .	0.3	2
228	Temperature Dependence of the Impedance of Amorphous Elastically Deformed CoFeSiB Ribbons. Physics of Metals and Metallography, 2021, 122, 1075-1080.	0.3	2
229	Thermal Stability of Field- and Stress-Induced Anisotropy in Nanocrystalline Fe-Based and Amorphous Co-Based Alloys. Textures and Microstructures, 1999, 32, 281-287.	0.2	1
230	Interlayer Coupling in Co/Ti/(Gd–Co)/Ti Artificial Layered Ferrimagnet. Chinese Physics Letters, 2005, 22, 3169-3172.	1.3	1
231	Surface magnetic properties of Co69Fe4Si15B12 when DC and AC currents flow through the ribbon. Journal of Magnetism and Magnetic Materials, 2006, 304, e853-e855.	1.0	1
232	Magnetic Behaviour of Tb/Si Nanoscale Multilayers with Small Thickness of Rare Earth Layers. Chinese Physics Letters, 2007, 24, 1717-1719.	1.3	1
233	GMI magnetic-particle concentration detection in continuous flow. Procedia Engineering, 2010, 5, 1324-1327.	1.2	1
234	Study of GdCo/Si/Co/Si Multilayers by Polarized Neutron Reflectivity. Journal of Physics: Conference Series, 2011, 325, 012018.	0.3	1

#	Article	IF	CITATIONS
235	An isotropic magnetic-field transducer based on the giant magnetic impedance effect. Russian Journal of Nondestructive Testing, 2013, 49, 474-481.	0.3	1
236	Features of the magnetic properties of Co/Si/Co thin-film systems. Technical Physics Letters, 2013, 39, 1089-1092.	0.2	1
237	Hysteretic properties of nanostructured terbium films. Technical Physics, 2014, 59, 530-534.	0.2	1
238	Peculiarities of the Giant Magnetoimpedance in Permalloy-Based Film Structures in the Important Temperature Range for Practical Applications. Technical Physics, 2018, 63, 67-72.	0.2	1
239	Methodological aspects of small iron concentrations determination in black yeasts grown in the presence of iron oxide nanoparticles. EPJ Web of Conferences, 2018, 185, 10007.	0.1	1
240	Thermosensitive Spin Valve Based on an Artificial Ferrimagnet: Magnetization Process in a Wide Range of Fields. Physics of the Solid State, 2019, 61, 1609-1613.	0.2	1
241	Influense of various forms of iron on growth of Chlorella vulgaris Beijer culture. Journal of Physics: Conference Series, 2019, 1389, 012073.	0.3	1
242	Fe _x Ni _{100-x} Thin Film Systems with Slight Deviations from Zero Magnetostriction Compositions: Focus on Pressure Sensor Applications. Key Engineering Materials, 2019, 826, 11-18.	0.4	1
243	Demagnetization Processes in Multilayered Permalloy-Based Film Structures. Inorganic Materials: Applied Research, 2020, 11, 838-843.	0.1	1
244	Effect of Magnetic Ferric Oxide (γ-Fe2O3) Nanoparticles on the Growth of Algal and Yeast Cultures. Inorganic Materials: Applied Research, 2020, 11, 772-776.	0.1	1
245	Ferromagnetic Resonance of FeNi/Cu/FeNi Thin Film on Coplanar Waveguide with Operating Frequency of 1 to 20 GHz. Russian Physics Journal, 2020, 63, 1-8.	0.2	1
246	Spin Reorientation Transition and Exchange Bias in Hard/Soft Tb–Co/FeNi Films. IEEE Transactions on Magnetics, 2022, 58, 1-5.	1.2	1
247	FeCoNi Electroplated Wire Based Magnetoimpedance Sensitive Element. Sensor Letters, 2013, 11, 180-183.	0.4	1
248	DDS control and magneto-impedance sensor signal lock-in amplifier data reading program. AIP Conference Proceedings, 2020, , .	0.3	1
249	The Modeling of Magnetic Detection of Iron Oxide Nanoparticles in the Stream of Patient-Specific Artery With Stenotic Lesion: The Effects of Vessel Geometry and Particle Concentration. IEEE Transactions on Magnetics, 2022, 58, 1-5.	1.2	1
250	Magnetodynamic study of the ferroliquid current in blood vessels: Focus on magnetic detection systems. AIP Conference Proceedings, 2022, , .	0.3	1
251	The effect of slight plastic deformation on the formation of induced magnetic anisotropy in Fe-3%Si alloy in the course of thermomechanical treatment above the Curie point. Journal of Magnetism and Magnetic Materials, 1996, 157-158, 541-542.	1.0	0
252	Title is missing!. Russian Physics Journal, 2002, 45, 1181-1189.	0.2	0

#	Article	IF	CITATIONS
253	Equivalent magnetic noise of thin film based giant magneto-impedance microsensors. , 2014, , .		Ο
254	Development of Polymer-Permalloy Film Composites with or without Nanoparticles for Sensor and Microwave Applications. Key Engineering Materials, 2015, 644, 163-166.	0.4	0
255	350% Magneto-impedance ratio in thin-film structures. , 2015, , .		Ο
256	Investigation of the Special Features of Low-Temperature Carbon Coating Deposition on the Permalloy Film Surface Under Normal Conditions During Interaction with Aromatic Solvents. Russian Physics Journal, 2017, 60, 157-162.	0.2	0
257	Magnetic Properties of Iron Oxide Nanoparticles Obtained by Laser Evaporation. Russian Physics Journal, 2017, 59, 1491-1497.	0.2	Ο
258	Structural and magnetic characteristics of the Co/Cu/Co thin-film systems. EPJ Web of Conferences, 2018, 185, 03009.	0.1	0
259	Magnetic properties and giant magnetoimpedance effect for CoFeMoSiB surface modified amorphous ribbons covered by water based ferrofluid. EPJ Web of Conferences, 2018, 185, 10003.	0.1	0
260	Influence of metal containing nanocomposites on the kinetics of microbial population development. Journal of Physics: Conference Series, 2019, 1389, 012075.	0.3	0
261	Design magnetic matrices for cell technology supporting devices. Journal of Physics: Conference Series, 2019, 1389, 012072.	0.3	0
262	Thin film based magnetoimpedance sensor for magnetic needle position identification. AIP Conference Proceedings, 2019, , .	0.3	0
263	Magnetic Properties of Thin Films FexNi100 –x (x = 20, 17, 15%): Focus on High Frequency Sensor Applications. Inorganic Materials: Applied Research, 2020, 11, 226-231.	0.1	0
264	Thermal Reversibility of the Magnetoimpedance of Amorphous CoFeSiB Ribbons. Physics of Metals and Metallography, 2021, 122, 731-736.	0.3	0
265	Characteristic Features of Magnetization Reversal of Exchange Coupled Tb–Co/FeNi Film Structures in a Temperature Range Including the Compensation Point of the Ferrimagnetic Layer. Physics of the Solid State, 2021, 63, 1558-1563.	0.2	0
266	The Magnetocaloric Effect in the Vicinity of the Magnetic Compensation Temperature of Amorphous Gd–Co Ferrimagnetic Films. Physics of the Solid State, 2021, 63, 1553-1557.	0.2	0
267	Magnetic hysteresis properties of Tb-Co multilayered films. AIP Conference Proceedings, 2022, , .	0.3	О