
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4172738/publications.pdf Version: 2024-02-01

λλει λλανις

#	Article	IF	CITATIONS
1	Quaternary ammonium iminofullerenes improve root growth of oxidative-stress maize through ASA-GSH cycle modulating redox homeostasis of roots and ROS-mediated root-hair elongation. Journal of Nanobiotechnology, 2022, 20, 15.	9.1	17
2	A new adenylyl cyclase, putative disease-resistance RPP13-like protein 3, participates in abscisic acid-mediated resistance to heat stress in maize. Journal of Experimental Botany, 2021, 72, 283-301.	4.8	41
3	Protein Analysis of Pollen Tubes after the Treatments of Membrane Trafficking Inhibitors Gains Insights on Molecular Mechanism Underlying Pollen Tube Polar Growth. Protein Journal, 2021, 40, 205-222.	1.6	3
4	Function of Small Peptides During Male-Female Crosstalk in Plants. Frontiers in Plant Science, 2021, 12, 671196.	3.6	9
5	Differential abundance proteins associated with rapid growth of etiolated coleoptiles in maize. Plant Direct, 2021, 5, e00332.	1.9	1
6	Proteomic Analysis of Generative and Vegetative Nuclei Reveals Molecular Characteristics of Pollen Cell Differentiation in Lily. Frontiers in Plant Science, 2021, 12, 641517.	3.6	1
7	Quaternary ammonium iminofullerenes promote root growth and osmotic-stress tolerance in maize via ROS neutralization and improved energy status. Plant Physiology and Biochemistry, 2021, 164, 122-131.	5.8	7
8	Genome-Wide Identification and Comparison of Cysteine Proteases in the Pollen Coat and Other Tissues in Maize. Frontiers in Plant Science, 2021, 12, 709534.	3.6	2
9	Digging for Stress-Responsive Cell Wall Proteins for Developing Stress-Resistant Maize. Frontiers in Plant Science, 2020, 11, 576385.	3.6	6
10	Physiological and transcriptional response to heat stress in heat-resistant and heat-sensitive maize (Zea mays L.) inbred lines at seedling stage. Protoplasma, 2020, 257, 1615-1637.	2.1	19
11	The GATA Gene Family in Chickpea: Structure Analysis and Transcriptional Responses to Abscisic Acid and Dehydration Treatments Revealed Potential Genes Involved in Drought Adaptation. Journal of Plant Growth Regulation, 2020, 39, 1647-1660.	5.1	15
12	ldentification of drought tolerant mechanisms in a drought-tolerant maize mutant based on physiological, biochemical and transcriptomic analyses. BMC Plant Biology, 2020, 20, 315.	3.6	32
13	Comparison of protein extraction methods for 2DE-based proteomic analysis of duckweed Spirodela polyrhiza, a small aquatic model plant. Aquatic Botany, 2020, 163, 103216.	1.6	4
14	Maize mesocotyl: Role in response to stress and deepâ€sowing tolerance. Plant Breeding, 2020, 139, 466-473.	1.9	18
15	A rapid and universal method for isolating starch granules in plant tissues. Plant, Cell and Environment, 2019, 42, 3355-3371.	5.7	6
16	Proteomic Analysis of Starch Biosynthesis in Maize Seeds. Starch/Staerke, 2019, 71, 1800294.	2.1	11
17	QTLs for constitutive aerenchyma from Zea nicaraguensis improve tolerance of maize to root-zone oxygen deficiency. Journal of Experimental Botany, 2019, 70, 6475-6487.	4.8	29
18	2-DE-based proteomic analysis of protein changes associated with etiolated mesocotyl growth in Zea mays. BMC Genomics, 2019, 20, 758.	2.8	8

#	Article	IF	CITATIONS
19	Jasmonic acid-induced hydrogen sulfide activates MEK1/2 in regulating the redox state of ascorbate in <i>Arabidopsis thaliana</i> leaves. Plant Signaling and Behavior, 2019, 14, 1629265.	2.4	8
20	Organ-specific genetic interactions between paralogues of the <i>PXY</i> and <i>ER</i> receptor kinases enforce radial patterning in <i>Arabidopsis</i> vascular tissue. Development (Cambridge), 2019, 146, .	2.5	23
21	Proteomic identification of lipid-bodies-associated proteins in maize seeds. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	9
22	Commentary: Leucine-rich Repeat Receptor-Like Gene Screen Reveals that Nicotiana RXEG1 Regulates Glycoside Hydrolase 12 MAMP Detection. Frontiers in Genetics, 2019, 10, 162.	2.3	1
23	Subcellular locations of potential cell wall proteins in plants: predictors, databases and cross-referencing. Briefings in Bioinformatics, 2018, 19, 1130-1140.	6.5	10
24	Modified TCA/acetone precipitation of plant proteins for proteomic analysis. PLoS ONE, 2018, 13, e0202238.	2.5	66
25	On the Promising Role of Enzyme Activity Assay in Interpreting Comparative Proteomic Data in Plants. Proteomics, 2018, 18, e1800234.	2.2	6
26	Protein Extraction Methods Shape Much of the Extracted Proteomes. Frontiers in Plant Science, 2018, 9, 802.	3.6	30
27	Editorial: Protein Quality Controlling Systems in Plant Responses to Environmental Stresses. Frontiers in Plant Science, 2018, 9, 908.	3.6	5
28	Papain-like and legumain-like proteases in rice: genome-wide identification, comprehensive gene feature characterization and expression analysis. BMC Plant Biology, 2018, 18, 87.	3.6	34
29	Genetic Modification for Improving Seed Vigor Is Transitioning from Model Plants to Crop Plants. Frontiers in Plant Science, 2017, 8, 8.	3.6	56
30	Enhancing Omics Research of Crop Responses to Drought under Field Conditions. Frontiers in Plant Science, 2017, 8, 174.	3.6	31
31	Accumulation Profiles of Embryonic Salt-Soluble Proteins in Maize Hybrids and Parental Lines Indicate Matroclinous Inheritance: A Proteomic Analysis. Frontiers in Plant Science, 2017, 8, 1824.	3.6	12
32	Reduction and Alkylation of Proteins in 2D Gel Electrophoresis: Before or after Isoelectric Focusing?. Frontiers in Chemistry, 2017, 5, 59.	3.6	6
33	Increasing Confidence of Proteomics Data Regarding the Identification of Stress-Responsive Proteins in Crop Plants. Frontiers in Plant Science, 2016, 7, 702.	3.6	19
34	Evaluation of Three Protein-Extraction Methods for Proteome Analysis of Maize Leaf Midrib, a Compound Tissue Rich in Sclerenchyma Cells. Frontiers in Plant Science, 2016, 7, 856.	3.6	21
35	Commentary: Rapid Phosphoproteomic Effects of Abscisic Acid (ABA) on Wild-Type and ABA Receptor-Deficient A. thaliana Mutants. Frontiers in Plant Science, 2016, 7, 1062.	3.6	0
36	The Difference of Physiological and Proteomic Changes in Maize Leaves Adaptation to Drought, Heat, and Combined Both Stresses. Frontiers in Plant Science, 2016, 7, 1471.	3.6	104

#	Article	lF	CITATIONS
37	Quantitative Proteomic Analyses Identify ABA-Related Proteins and Signal Pathways in Maize Leaves under Drought Conditions. Frontiers in Plant Science, 2016, 7, 1827.	3.6	43
38	Advances in crop proteomics: PTMs of proteins under abiotic stress. Proteomics, 2016, 16, 847-865.	2.2	67
39	Proteomics in Sex Determination of Dioecious Plants. , 2016, , 363-380.		2
40	The Response of Chloroplast Proteome to Abiotic Stress. , 2016, , 237-249.		4
41	Exploiting the potential of 2DE in proteomics analyses. Expert Review of Proteomics, 2016, 13, 901-903.	3.0	16
42	Proteomics Driven Research of Abiotic Stress Responses in Crop Plants. , 2016, , 351-362.		1
43	ZmCIPK8, a CBL-interacting protein kinase, regulates maize response to drought stress. Plant Cell, Tissue and Organ Culture, 2016, 124, 459-469.	2.3	30
44	Protein Subcellular Location: The Gap Between Prediction and Experimentation. Plant Molecular Biology Reporter, 2016, 34, 52-61.	1.8	30
45	Proteomic Characterization of Differential Abundant Proteins Accumulated between Lower and Upper Epidermises of Fleshy Scales in Onion (Allium cepa L.) Bulbs. PLoS ONE, 2016, 11, e0168959.	2.5	7
46	Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress. Scientific Reports, 2015, 5, 15626.	3.3	57
47	Phosphoproteomic analysis of the response of maize leaves to drought, heat and their combination stress. Frontiers in Plant Science, 2015, 6, 298.	3.6	117
48	Proteomic analysis of crop plants under abiotic stress conditions: where to focus our research?. Frontiers in Plant Science, 2015, 6, 418.	3.6	39
49	Polyamines function in stress tolerance: from synthesis to regulation. Frontiers in Plant Science, 2015, 6, 827.	3.6	322
50	Making better maize plants for sustainable grain production in a changing climate. Frontiers in Plant Science, 2015, 6, 835.	3.6	52
51	Proteomics: a promising tool for research on sex-related differences in dioecious plants. Frontiers in Plant Science, 2015, 6, 954.	3.6	5
52	Protein sHSP26 improves chloroplast performance under heat stress by interacting with specific chloroplast proteins in maize (Zea mays). Journal of Proteomics, 2015, 115, 81-92.	2.4	57
53	Comparative proteomic analysis of leaves between photoperiod-sensitive and photoperiod-insensitive maize inbred seedlings under long day treatments. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	5
54	Diversity and function of maize pollen coat proteins: from biochemistry to proteomics. Frontiers in Plant Science, 2015, 06, 199.	3.6	17

#	Article	IF	CITATIONS
55	Proteome Profiling of Maize Pollen Coats Reveals Novel Protein Components. Plant Molecular Biology Reporter, 2015, 33, 975-986.	1.8	16
56	Differences in properties and proteomes of the midribs contribute to the size of the leaf angle in two near-isogenic maize lines. Journal of Proteomics, 2015, 128, 113-122.	2.4	10
57	Chloroform-Assisted Phenol Extraction Improving Proteome Profiling of Maize Embryos through Selective Depletion of High-Abundance Storage Proteins. PLoS ONE, 2014, 9, e112724.	2.5	18
58	Characterization of eight CBL genes expressions in maize early seeding development. Acta Physiologiae Plantarum, 2014, 36, 3307-3314.	2.1	5
59	Universal sample preparation method integrating trichloroacetic acid/acetone precipitation with phenol extraction for crop proteomic analysis. Nature Protocols, 2014, 9, 362-374.	12.0	173
60	"Omics―of Maize Stress Response for Sustainable Food Production: Opportunities and Challenges. OMICS A Journal of Integrative Biology, 2014, 18, 714-732.	2.0	82
61	Protein extraction from plant tissues for 2DE and its application in proteomic analysis. Proteomics, 2014, 14, 645-658.	2.2	84
62	Proteomic analysis reveals differential accumulation of small heat shock proteins and late embryogenesis abundant proteins between ABA-deficient mutant vp5 seeds and wild-type Vp5 seeds in maize. Frontiers in Plant Science, 2014, 5, 801.	3.6	30
63	Characterization of five CIPK genes expressions in maize under water stress. Acta Physiologiae Plantarum, 2013, 35, 1555-1564.	2.1	15
64	Root protein profile changes induced by Al exposure in two rice cultivars differing in Al tolerance. Journal of Proteomics, 2013, 78, 281-293.	2.4	33
65	Identification of proteins regulated by ABA in response to combined drought and heat stress in maize roots. Acta Physiologiae Plantarum, 2013, 35, 501-513.	2.1	35
66	Proteomic Identification of Differentially Expressed Proteins between Male and Female Plants in Pistacia chinensis. PLoS ONE, 2013, 8, e64276.	2.5	16
67	Functional assignment to maize group 1 LEA protein EMB564 within the cell nucleus using computational analysis. Bioinformation, 2013, 9, 276-280.	0.5	7
68	Improving gelâ€based proteome analysis of soluble protein extracts by heat prefractionation. Proteomics, 2012, 12, 938-943.	2.2	13
69	Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat. Plant Cell Reports, 2012, 31, 671-685.	5.6	79
70	Abscisic Acid Refines the Synthesis of Chloroplast Proteins in Maize (Zea mays) in Response to Drought and Light. PLoS ONE, 2012, 7, e49500.	2.5	52
71	Sequential Extraction Results in Improved Proteome Profiling of Medicinal Plant Pinellia ternata Tubers, Which Contain Large Amounts of High-Abundance Proteins. PLoS ONE, 2012, 7, e50497.	2.5	13
72	Proteomic analysis of seed viability in maize. Acta Physiologiae Plantarum, 2011, 33, 181-191.	2.1	49

WEI WANG

#	Article	IF	CITATIONS
73	Proteomic identification of differentially expressed proteins in mature and germinated maize pollen. Acta Physiologiae Plantarum, 2011, 33, 1467-1474.	2.1	19
74	Differential expression of proteins in maize roots in response to abscisic acid and drought. Acta Physiologiae Plantarum, 2011, 33, 2437-2446.	2.1	35
75	Characterization of Small Heat Shock Proteins Associated with Maize Tolerance to Combined Drought and Heat Stress. Journal of Plant Growth Regulation, 2010, 29, 455-464.	5.1	73
76	Evaluation and improvement of spectrophotometric assays of TTC reduction: maize (Zea mays) embryo as an example. Acta Physiologiae Plantarum, 2010, 32, 815-819.	2.1	17
77	Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regulation, 2010, 60, 225-235.	3.4	117
78	Current Initiatives in Proteomics of the Olive Tree. , 2010, , 25-32.		4
79	Proteomic analysis of β-1,3-glucanase in grape berry tissues. Acta Physiologiae Plantarum, 2009, 31, 597-604.	2.1	16
80	Improving soil protein extraction for metaproteome analysis and glomalinâ€related soil protein detection. Proteomics, 2009, 9, 4970-4973.	2.2	51
81	A mutation in <i>THERMOSENSITIVE MALE STERILE 1,</i> encoding a heat shock protein with DnaJ and PDI domains, leads to thermosensitive gametophytic male sterility in Arabidopsis. Plant Journal, 2009, 57, 870-882.	5.7	102
82	Cross-talks between Ca2+/CaM and H2O2 in abscisic acid-induced antioxidant defense in leaves of maize plants exposed to water stress. Plant Growth Regulation, 2008, 55, 183-198.	3.4	41
83	Optimizing protein extraction from plant tissues for enhanced proteomics analysis. Journal of Separation Science, 2008, 31, 2032-2039.	2.5	139
84	Rapid desalting and protein recovery with phenol after ammonium sulfate fractionation. Electrophoresis, 2007, 28, 2358-2360.	2.4	12
85	Characterization of olive seed storage proteins. Acta Physiologiae Plantarum, 2007, 29, 439-444.	2.1	20
86	Biochemical Characterization and Cellular Localization of 11SType Storage Proteins in Olive (Olea) Tj ETQq0 0 0	rgBT/Ove	erlogg 10 Tf 50
87	Localization of group-1 allergen Zea m 1 in the coat and wall of maize pollen. Acta Histochemica, 2006, 108, 395-400.	1.8	13
88	A universal and rapid protocol for protein extraction from recalcitrant plant tissues for proteomic analysis. Electrophoresis, 2006, 27, 2782-2786.	2.4	482
89	Male-sterile mutation alters Zea�m�1 (�-expansinï;½1) accumulation in a maize mutant. Sexual Plant Reproduction, 2004, 17, 41-47.	2.2	17
90	Post-translational modifications of ?-tubulin in Zea mays L. are highly tissue specific. Planta, 2004, 218,	3.2	37

460-465.

#	Article	IF	CITATIONS
91	Removal of lipid contaminants by organic solvents from oilseed protein extract prior to electrophoresis. Analytical Biochemistry, 2004, 329, 139-141.	2.4	37
92	Protein extraction for two-dimensional electrophoresis from olive leaf, a plant tissue containing high levels of interfering compounds. Electrophoresis, 2003, 24, 2369-2375.	2.4	366