List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4172609/publications.pdf Version: 2024-02-01

		109137	110170
112	4,534	35	64
papers	citations	h-index	g-index
132	132	132	3527
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Selective One-Electron and Two-Electron Reduction of C60 with NADH and NAD Dimer Analogues via Photoinduced Electron Transfer. Journal of the American Chemical Society, 1998, 120, 8060-8068.	6.6	221
2	Monooxygenase Activity of Type 3 Copper Proteins. Accounts of Chemical Research, 2007, 40, 592-600.	7.6	211
3	Synthesis and Characterization of Imidazolate-Bridged Dinuclear Complexes as Active Site Models of Cu,Zn-SOD. Journal of the American Chemical Society, 2000, 122, 5733-5741.	6.6	209
4	Mononuclear copper active-oxygen complexes. Current Opinion in Chemical Biology, 2006, 10, 115-122.	2.8	190
5	Oxygenation of Phenols to Catechols by A (μ-η2:η2-Peroxo)dicopper(II) Complex:  Mechanistic Insight into the Phenolase Activity of Tyrosinase. Journal of the American Chemical Society, 2001, 123, 6708-6709.	6.6	180
6	Direct Hydroxylation of Benzene to Phenol Using Hydrogen Peroxide Catalyzed by Nickel Complexes Supported by Pyridylalkylamine Ligands. Journal of the American Chemical Society, 2015, 137, 5867-5870.	6.6	160
7	Mononuclear Copper(II)â^'Superoxo Complexes that Mimic the Structure and Reactivity of the Active Centers of PHM and DβM. Journal of the American Chemical Society, 2009, 131, 2788-2789.	6.6	155
8	Active Site Models for Galactose Oxidase. Electronic Effect of the Thioether Group in the Novel Organic Cofactor. Inorganic Chemistry, 1997, 36, 1407-1416.	1.9	140
9	Developing Mononuclear Copper–Active-Oxygen Complexes Relevant to Reactive Intermediates of Biological Oxidation Reactions. Accounts of Chemical Research, 2015, 48, 2066-2074.	7.6	140
10	Nill(TPA) as an efficient catalyst for alkane hydroxylation with m-CPBA. Chemical Communications, 2006, , 4016.	2.2	125
11	Kinetic Evaluation of Phenolase Activity of Tyrosinase Using Simplified Catalytic Reaction System. Journal of the American Chemical Society, 2003, 125, 13034-13035.	6.6	113
12	Ligand effects on Nill-catalysed alkane-hydroxylation with m-CPBA. Dalton Transactions, 2007, , 1120.	1.6	111
13	Reactivity of Mononuclear Alkylperoxo Copper(II) Complex. Oâ^'O Bond Cleavage and Câ^'H Bond Activation. Journal of the American Chemical Society, 2008, 130, 4244-4245.	6.6	102
14	Resonance Raman Spectroscopy as a Probe of the Bis(μ-oxo)dicopper Core. Journal of the American Chemical Society, 2000, 122, 792-802.	6.6	91
15	Formation, Characterization, and Reactivity of Bis(μ-oxo)dinickel(III) Complexes Supported by A Series of Bis[2-(2-pyridyl)ethyl]amine Ligands. Journal of the American Chemical Society, 2001, 123, 11168-11178.	6.6	90
16	Oxidation of Benzyl Alcohol with Cull and ZnII Complexes of the Phenoxyl Radical as a Model of the Reaction of Galactose Oxidase. Angewandte Chemie - International Edition, 1999, 38, 2774-2776.	7.2	86
17	Modeling of the Chemistry of Quinoprotein Methanol Dehydrogenase. Oxidation of Methanol by Calcium Complex of Coenzyme PQQ via Additionâ^'Elimination Mechanism. Journal of the American Chemical Society, 1997, 119, 439-440.	6.6	75
18	Active Site Models for the Cu _A Site of Peptidylglycine α-Hydroxylating Monooxygenase and Dopamine β-Monooxygenase. Inorganic Chemistry, 2012, 51, 9465-9480.	1.9	75

#	Article	IF	CITATIONS
19	Crystal Structures of Copper-depleted and Copper-bound Fungal Pro-tyrosinase. Journal of Biological Chemistry, 2013, 288, 22128-22140.	1.6	72
20	Model Studies on Calcium-Containing Quinoprotein Alcohol Dehydrogenases. Catalytic Role of Ca2+for the Oxidation of Alcohols by Coenzyme PQQ (4,5-Dihydro-4,5-dioxo-1H-pyrrolo[2,3-f]quinoline-2,7,9-tricarboxylic Acid)â€. Biochemistry, 1998, 37, 6562-6571.	1.2	71
21	Fine Tuning of the Interaction between the Copper(I) and Disulfide Bond. Formation of a Bis(μ-thiolato)dicopper(II) Complex by Reductive Cleavage of the Disulfide Bond with Copper(I). Journal of the American Chemical Society, 2001, 123, 4087-4088.	6.6	67
22	Aliphatic Hydroxylation by a Bis(μ-oxo)dinickel(III) Complex. Journal of the American Chemical Society, 1999, 121, 8945-8946.	6.6	66
23	Electron-Transfer Properties of Active Aldehydes of Thiamin Coenzyme Models, and Mechanism of Formation of the Reactive Intermediates. Chemistry - A European Journal, 1999, 5, 2810-2818.	1.7	59
24	Structures and Redox Reactivities of Copper Complexes of (2-Pyridyl)alkylamine Ligands. Effects of the Alkyl Linker Chain Length. Inorganic Chemistry, 2003, 42, 8087-8097.	1.9	59
25	Redox Properties of a Mononuclear Copper(II)-Superoxide Complex. Inorganic Chemistry, 2013, 52, 10431-10437.	1.9	58
26	Copper–Oxygen Dynamics in the Tyrosinase Mechanism. Angewandte Chemie - International Edition, 2020, 59, 13385-13390.	7.2	57
27	Characterization of Imidazolate-Bridged Dinuclear and Mononuclear Hydroperoxo Complexes. Inorganic Chemistry, 2001, 40, 3200-3207.	1.9	52
28	Reactions of Copper(II)-H2O2 Adducts Supported by Tridentate Bis(2-pyridylmethyl)amine Ligands: Sensitivity to Solvent and Variations in Ligand Substitution. Inorganic Chemistry, 2008, 47, 8222-8232.	1.9	52
29	Aromatic Hydroxylation Reactivity of a Mononuclear Cu(II)â^'Alkylperoxo Complex. Journal of the American Chemical Society, 2007, 129, 7248-7249.	6.6	49
30	Direct Observation of Radical Intermediates While Investigating the Redox Behavior of Thiamin Coenzyme Models. Angewandte Chemie - International Edition, 1998, 37, 992-994.	7.2	48
31	Catalytic Alkane Hydroxylation Reaction with Nickel(II) Complexes Supported by Di- and Triphenol Ligands. Chemistry Letters, 2007, 36, 748-749.	0.7	48
32	Structure and O2-reactivity of copper(i) complexes supported by pyridylalkylamine ligands. Dalton Transactions, 2006, , 4531.	1.6	47
33	Reactivity of copper(ii)-alkylperoxo complexes. Dalton Transactions, 2011, 40, 10326.	1.6	47
34	An Osmium(III)/Osmium(V) Redox Couple Generating Os ^V (O)(OH) Center for <i>cis</i> -1,2-Dihydroxylation of Alkenes with H ₂ O ₂ : Os Complex with a Nitrogen-Based Tetradentate Ligand. Journal of the American Chemical Society, 2012, 134, 19270-19280.	6.6	44
35	Copper(I)â€Dioxygen Reactivity in a Sterically Demanding Tripodal Tetradentate tren Ligand: Formation and Reactivity of a Mononuclear Copper(II) Endâ€On Superoxo Complex. European Journal of Inorganic Chemistry, 2012, 2012, 4574-4578.	1.0	41
36	Model Studies of TTQ-Containing Amine Dehydrogenases. Journal of Organic Chemistry, 1996, 61, 8967-8974.	1.7	35

#	ARTICLE	IF	CITATIONS
37	Effects of magnesium ion on kinetic stability and spin distribution of phenoxyl radical derived from a vitamin E analogue: mechanistic insight into antioxidative hydrogen-transfer reaction of vitamin EElectronic supplementary information available: calculated spin density distributions and dependence of kHT on [Mg2+] for hydrogen transfer. See http://www.rsc.org/suppdata/p2/b2/b205380b/.	1.1	35
38	Structure and dioxygen-reactivity of copper(i) complexes supported by bis(6-methylpyridin-2-ylmethyl)amine tridentate ligands. Dalton Transactions, 2005, , 3514.	1.6	34
39	Tetrahedral Copper(II) Complexes with a Labile Coordination Site Supported by a Tris-tetramethylguanidinato Ligand. Inorganic Chemistry, 2017, 56, 9634-9645.	1.9	34
40	Effects of Metal Ions on the Electronic, Redox, and Catalytic Properties of Cofactor TTQ of Quinoprotein Amine Dehydrogenases. Journal of the American Chemical Society, 2000, 122, 12087-12097.	6.6	33
41	Redox Chemistry of Nickel(II) Complexes Supported by a Series of Noninnocent β-Diketiminate Ligands. Inorganic Chemistry, 2014, 53, 6159-6169.	1.9	33
42	Catalytic C–H amination driven by intramolecular ligand-to-nitrene one-electron transfer through a rhodium(<scp>iii</scp>) centre. Chemical Communications, 2017, 53, 4849-4852.	2.2	32
43	Characterization of imidazolate-bridged Cu(ii)–Zn(ii) heterodinuclear and Cu(ii)–Cu(ii) homodinuclear hydroperoxo complexes as reaction intermediate models of Cu,Zn–SOD. Chemical Communications, 2000, , 1051-1052.	2.2	30
44	Post-Translational His-Cys Cross-Linkage Formation in Tyrosinase Induced by Copper(II)â^'Peroxo Species. Journal of the American Chemical Society, 2011, 133, 1180-1183.	6.6	30
45	Generation, Characterization, and Reactivity of a Cu ^{II} –Alkylperoxide/Anilino Radical Complex: Insight into the O–O Bond Cleavage Mechanism. Journal of the American Chemical Society, 2015, 137, 10870-10873.	6.6	29
46	Kinetics and DFT studies on the reaction of copper(II) complexes and H2O2. Journal of Biological Inorganic Chemistry, 2005, 10, 581-590.	1.1	28
47	Multifunctions of MelB, a Fungal Tyrosinase from <i>Aspergillus oryzae</i> . ChemBioChem, 2012, 13, 193-201.	1.3	27
48	A copper complex supported by an N ₂ S-tridentate ligand inducing efficient heterolytic O–O bond cleavage of alkylhydroperoxide. Dalton Transactions, 2014, 43, 4871-4877.	1.6	27
49	Geometric Control of Nuclearity in Copper(I)/Dioxygen Chemistry. Inorganic Chemistry, 2014, 53, 8786-8794.	1.9	27
50	Noninnocent Ligand in Rhodium(III)-Complex-Catalyzed C–H Bond Amination with Tosyl Azide. Inorganic Chemistry, 2018, 57, 9738-9747.	1.9	27
51	A Well-Defined Osmium–Cupin Complex: Hyperstable Artificial Osmium Peroxygenase. Journal of the American Chemical Society, 2017, 139, 5149-5155.	6.6	26
52	Ceriumâ€Complexâ€Catalyzed Oxidation of Arylmethanols under Atmospheric Pressure of Dioxygen and Its Mechanism through a Sideâ€On μâ€Peroxo Dicerium(IV) Complex. Chemistry - A European Journal, 2016, 22, 4008-4014.	1.7	25
53	Syntheses, Structures, and O2-Reactivities of Copper(I) Complexes with Bis(2-pyridylmethyl)amine and Bis(2-quinolylmethyl)amine Tridentate Ligands. Bulletin of the Chemical Society of Japan, 2006, 79, 1729-1741.	2.0	24
54	Heterolytic Alkyl Hydroperoxide O–O Bond Cleavage by Copper(I) Complexes. European Journal of Inorganic Chemistry, 2012, 2012, 4099-4103.	1.0	24

#	Article	IF	CITATIONS
55	Copper complexes of the non-innocent β-diketiminate ligand containing phenol groups. Dalton Transactions, 2013, 42, 2438-2444.	1.6	24
56	Osmium(III) and Osmium(V) Complexes Bearing a Macrocyclic Ligand: A Simple and Efficient Catalytic System for <i>cis</i> â€Ðihydroxylation of Alkenes with Hydrogen Peroxide. Chemistry - an Asian Journal, 2013, 8, 2154-2160.	1.7	22
57	Modelling a â€~histidine brace' motif in mononuclear copper monooxygenases. Chemical Communications, 2020, 56, 5123-5126.	2.2	22
58	Direct Observation of Primary Câ^'H Bond Oxidation by an Oxidoâ€Iron(IV) Porphyrin ï€â€Radical Cation Complex in a Fluorinated Carbon Solvent. Angewandte Chemie - International Edition, 2019, 58, 10863-10866.	7.2	20
59	Cupric-superoxide complex that induces a catalytic aldol reaction-type C–C bond formation. Communications Chemistry, 2019, 2, .	2.0	19
60	Copper–Oxygen Dynamics in the Tyrosinase Mechanism. Angewandte Chemie, 2020, 132, 13487-13492.	1.6	18
61	Controlling Dicopper Protein Functions. Bulletin of the Chemical Society of Japan, 2016, 89, 733-742.	2.0	17
62	Nickel(II) Complexes of tpa Ligands with 6-Phenyl Substituents (Ph <i>n</i> tpa). Structure and H2O2-Reactivity. Bulletin of the Chemical Society of Japan, 2010, 83, 530-538.	2.0	16
63	A Model for the Active-Site Formation Process in DMSO Reductase Family Molybdenum Enzymes Involving Oxidoâ^'Alcoholato and Oxidoâ~'Thiolato Molybdenum(VI) Core Structures. Inorganic Chemistry, 2016, 55, 1542-1550.	1.9	15
64	Dioxygenation of Flavonol Catalyzed by Copper(II) Complexes Supported by Carboxylate-Containing Ligands: Structural and Functional Models of Quercetin 2,4-Dioxygenase. European Journal of Inorganic Chemistry, 2017, 2017, 1845-1854.	1.0	15
65	Controlling Coordination Number of Rhodium(III) Complex by Ligand-Based Redox for Catalytic C–H Amination. Bulletin of the Chemical Society of Japan, 2020, 93, 279-286.	2.0	15
66	Oxidative Cyclization of 1,5-Dienes with Hydrogen Peroxide Catalyzed by an Osmium(III) Complex: Synthesis of <i>cis</i> -Tetrahydrofurans. Organic Letters, 2016, 18, 1246-1249.	2.4	14
67	A Bis(μâ€oxido)dinickel(III) Complex with a Triplet Ground State. Angewandte Chemie - International Edition, 2018, 57, 7640-7643.	7.2	14
68	Revisiting Alkane Hydroxylation with m â€CPBA (m â€Chloroperbenzoic Acid) Catalyzed by Nickel(II) Complexes. Chemistry - A European Journal, 2021, 27, 14730-14737.	1.7	14
69	A Tetradentate βâ€Diiminato Ligand Containing Phenolate Substituents: Flexivalent Coordination to Mn ^{III} , Co ^{III} , Ni ^{II} , and Cu ^{II} . European Journal of Inorganic Chemistry, 2014, 2014, 5752-5759.	1.0	13
70	<i>cis</i> -1,2-Aminohydroxylation of Alkenes Involving a Catalytic Cycle of Osmium(III) and Osmium(V) Centers: Os ^V (O)(NHTs) Active Oxidant with a Macrocyclic Tetradentate Ligand. Inorganic Chemistry, 2015, 54, 7073-7082.	1.9	13
71	Geometric effects on O O bond scission of copper(II)-alkylperoxide complexes. Journal of Inorganic Biochemistry, 2017, 177, 375-383.	1.5	13
72	Synthesis and Properties of Oxo-carboxylato- and Dioxo-Bridged Diosmium Complexes of Tris(2-pyridylmethyl)amine. Inorganic Chemistry, 2011, 50, 9014-9023.	1.9	12

SHINOBU ІТОН

#	Article	IF	CITATIONS
73	Recent progress in oxidation chemistry of high-valent ruthenium-oxo and osmium-oxo complexes and related species. Coordination Chemistry Reviews, 2022, 466, 214536.	9.5	12
74	Characterization and Reactivity of a Tetrahedral Copper(II) Alkylperoxido Complex. Chemistry - A European Journal, 2019, 25, 11157-11165.	1.7	11
75	Hydroxylation of Unactivated C(sp ³)–H Bonds with <i>m</i> -Chloroperbenzoic Acid Catalyzed by an Iron(III) Complex Supported by a Trianionic Planar Tetradentate Ligand. Inorganic Chemistry, 2021, 60, 7641-7649.	1.9	11
76	Copper(I)–Dioxygen Reactivity in the Isolated Cavity of a Nanoscale Molecular Architecture. European Journal of Inorganic Chemistry, 2018, 2018, 1976-1983.	1.0	10
77	Cupin Variants as a Macromolecular Ligand Library for Stereoselective Michael Addition of Nitroalkanes. Angewandte Chemie - International Edition, 2020, 59, 7717-7720.	7.2	10
78	C–H Bond Activation of the Methyl Group of the Supporting Ligand in an Osmium(III) Complex upon Reaction with H ₂ O ₂ : Formation of an Organometallic Osmium(IV) Complex. Inorganic Chemistry, 2013, 52, 543-545.	1.9	9
79	Catalytic effect of monovalent cations on the amine oxidation by cofactor TTQ of quinoprotein amine dehydrogenases. Chemical Communications, 2000, , 329-330.	2.2	8
80	Catalysis of Photoinduced Electron Transfer Reactions. Advances in Photochemistry, 2007, , 107-172.	0.4	8
81	Oxygen Atom Insertion into the Osmium–Carbon Bond via an Organometallic Oxido–Osmium(V) Intermediate. Organometallics, 2021, 40, 102-106.	1.1	7
82	A Model Compound of the Novel Organic Cofactor CTQ (Cysteine Tryptophylquinone) of Quinohemoprotein Amine Dehydrogenase. European Journal of Organic Chemistry, 2004, 2004, 3074-3079.	1.2	6
83	Generation and characterisation of a stable nickel(ii)-aminoxyl radical complex. Dalton Transactions, 2017, 46, 8013-8016.	1.6	6
84	Tyrosinases in Organic Chemistry: A Versatile Tool for the αâ€Arylation of βâ€Đicarbonyl Compounds. European Journal of Organic Chemistry, 2018, 2018, 1789-1796.	1.2	6
85	Tin(II)–Nitrene Radical Complexes Formed by Electron Transfer from Redox-Active Ligand to Organic Azides and Their Reactivity in C(sp ³)–H Activation. Inorganic Chemistry, 2021, 60, 18603-18607.	1.9	6
86	Redox behavior of novel nickel and palladium complexes supported by trianionic non-innocent ligand containing β-diketiminate and phenol groups. Journal of Porphyrins and Phthalocyanines, 2015, 19, 377-387.	0.4	5
87	Structure and Reactivity of Copper Complexes Supported by a Bulky Tripodal N 4 Ligand: Copper(I)/Dioxygen Reactivity and Formation of a Hydroperoxide Copper(II) Complex. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 780-789.	0.6	5
88	Oxidoâ€Hydroxido―and Oxidoâ€Aminatoâ€Osmium(V) Complexes with a Cyclohexanediamineâ€Based Tetradentate Ligand as Active Oxidants for Dihydroxylation and Aminohydroxylation of Alkenes. European Journal of Inorganic Chemistry, 2019, 2019, 2891-2898.	1.0	5
89	Controlling the Reactivity of Copper(II) Acylperoxide Complexes. Inorganic Chemistry, 2021, 60, 8554-8565.	1.9	5
90	Halide-Adducts of OsO4. Structure and Reactivity in Alcohol-Oxidation. Bulletin of the Chemical Society of Japan, 2022, 95, 64-72.	2.0	5

#	Article	IF	CITATIONS
91	A Bis(μâ€oxido)dinickel(III) Complex with a Triplet Ground State. Angewandte Chemie, 2018, 130, 7766-7769.	1.6	4
92	C(sp ³)–H bond activation by the carboxylate-adduct of osmium tetroxide (OsO ₄). Dalton Transactions, 2022, 51, 1123-1130.	1.6	4
93	Theoretical rationalization for the equilibrium between (μ–η ² :η ² :Deroxido)Cu ^{II} Cu ^{II} and bis(μ-oxido)Cu ^{III} Cu ^{III} complexes: perturbational effects from ligand frameworks. Dalton Transactions. 2020. 49. 6710-6717.	1.6	3
94	Fine Tuning of Structure and Reactivity of Copper Complexes Using Pyridylalkylamine Ligands-Active Site Models for Copper Proteins Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2005, 63, 1240-1252.	0.0	3
95	Oxidative Deamination of Aliphatic Amines by Coenzyme PQQ in the Micellar System. Journal of Japan Oil Chemists Society, 1987, 36, 882-883.	0.1	3
96	Multinuclear NMR andab initio MO studies of 7-methyl-7H-pyrrolo [2,3-b]pyridine and related compounds. Journal of Physical Organic Chemistry, 1993, 6, 139-144.	0.9	2
97	Direct Observation of Primary Câ^'H Bond Oxidation by an Oxidoâ€Iron(IV) Porphyrin Ï€â€Radical Cation Complex in a Fluorinated Carbon Solvent. Angewandte Chemie, 2019, 131, 10979-10982.	1.6	2
98	Dioxygen-Binding in Metalloproteins and Corresponding Models. , 2021, , 200-237.		2
99	Chemical functions of novel coenzyme PQQ Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1989, 47, 855-867.	0.0	2
100	Chemical Functions of Novel Heterocyclic o-Quinone Cofactors and Their Applications Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1993, 51, 1154-1163.	0.0	2
101	Effects of Surfactants on the Oxidative Deamination of Amines by Coenzyme PQQ. Journal of Japan Oil Chemists Society, 1986, 35, 91-95.	0.1	2
102	Alkane Oxidation with H2O2 Catalyzed by OsO4-carboxylate Adduct and Its Application to Heterogeneous Catalyst. Chemistry Letters, 2022, 51, 231-234.	0.7	2
103	Dioxygen Activation and Mandelate Decarboxylation by Iron(II) Complexes of N4 Ligands: Evidence for Dioxygen-Derived Intermediates from Cobalt Analogues. Inorganic Chemistry, 2022, 61, 10461-10476.	1.9	2
104	Osmium Complexes Coordinated with Poly(pyridylmethyl)diamine-Based Hexadentate Ligands. European Journal of Inorganic Chemistry, 2018, 2018, 178-185.	1.0	1
105	C(sp ²)–H lodination by a Rhodium(III) Complex Supported by a Redox-active Ligand Bearing Amidophenolato Moieties. Chemistry Letters, 2020, 49, 666-669.	0.7	1
106	Cerium-Complex-Catalyzed Oxidation of Arylmethanols under Atmospheric Pressure of Dioxygen and Its Mechanism through a Side-On μ-Peroxo Dicerium(IV) Complex. Chemistry - A European Journal, 2016, 22, 3897-3897.	1.7	0
107	Dioxygenation of Flavonol Catalyzed by Copper(II) Complexes Supported by Carboxylate-Containing Ligands: Structural and Functional Models of Quercetin 2,4-Dioxygenase. European Journal of Inorganic Chemistry, 2017, 2017, 1844-1844.	1.0	0
108	Cupin Variants as a Macromolecular Ligand Library for Stereoselective Michael Addition of Nitroalkanes. Angewandte Chemie, 2020, 132, 7791-7794.	1.6	0

#	Article	IF	CITATIONS
109	Synthesis and structural properties of copper complexes toward the active center model of galactose oxidase. Nihon Kessho Gakkaishi, 1994, 36, 166-166.	0.0	0
110	Oxidative Transformation of Alkenes Catalyzed by Bioinspired Osmium Complexes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2017, 75, 929-940.	0.0	0
111	Hydroxylation of Aliphatic and Aromatic C-H Bonds Catalyzed by Biomimetic Transition-metal Complexes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 506-516.	0.0	Ο
112	Impressive Experiences Encountered in the Development from Bioorganic Chemistry Research to Bioinorganic Chemistry Research. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 697-700.	0.0	0