Stephen Griffies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4172608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics. Journal of Climate, 2006, 19, 643-674.	1.2	1,431
2	GFDL's ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics. Journal of Climate, 2012, 25, 6646-6665.	1.2	972
3	The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3. Journal of Climate, 2011, 24, 3484-3519.	1.2	887
4	Coordinated Ocean-ice Reference Experiments (COREs). Ocean Modelling, 2009, 26, 1-46.	1.0	573
5	GFDL's ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics*. Journal of Climate, 2013, 26, 2247-2267.	1.2	540
6	Evaluation of Climate Models. , 2014, , 741-866.		458
7	Simulated Climate and Climate Change in the GFDL CM2.5 High-Resolution Coupled Climate Model. Journal of Climate, 2012, 25, 2755-2781.	1.2	454
8	The Gent–McWilliams Skew Flux. Journal of Physical Oceanography, 1998, 28, 831-841.	0.7	398
9	The ACCESS coupled model: description, control climate and evaluation. Australian Meteorological Magazine, 2013, 63, 41-64.	0.4	374
10	Biharmonic Friction with a Smagorinsky-Like Viscosity for Use in Large-Scale Eddy-Permitting Ocean Models. Monthly Weather Review, 2000, 128, 2935-2946.	0.5	369
11	JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modelling, 2018, 130, 79-139.	1.0	357
12	Enhanced warming of the <scp>N</scp> orthwest <scp>A</scp> tlantic <scp>O</scp> cean under climate change. Journal of Geophysical Research: Oceans, 2016, 121, 118-132.	1.0	348
13	Formulation of an ocean model for global climate simulations. Ocean Science, 2005, 1, 45-79.	1.3	343
14	North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modelling, 2014, 73, 76-107.	1.0	320
15	Developments in ocean climate modelling. Ocean Modelling, 2000, 2, 123-192.	1.0	315
16	Lagrangian ocean analysis: Fundamentals and practices. Ocean Modelling, 2018, 121, 49-75.	1.0	313
17	Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models. Journal of Climate, 2015, 28, 952-977.	1.2	292
18	The GFDL CM3 Coupled Climate Model: Characteristics of the Ocean and Sea Ice Simulations. Journal of Climate 2011 24 3520-3544	1.2	288

#	Article	IF	CITATIONS
19	The GFDL Earth System Model Version 4.1 (GFDLâ€ESM 4.1): Overall Coupled Model Description and Simulation Characteristics. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002015.	1.3	277
20	On the use of IPCC-class models to assess the impact of climate on Living Marine Resources. Progress in Oceanography, 2011, 88, 1-27.	1.5	272
21	GFDL's CM2 Global Coupled Climate Models. Part II: The Baseline Ocean Simulation. Journal of Climate, 2006, 19, 675-697.	1.2	269
22	Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations. Ocean Modelling, 2011, 39, 61-78.	1.0	269
23	Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global. Surveys in Geophysics, 2019, 40, 1251-1289.	2.1	262
24	Structure and Performance of GFDL's CM4.0 Climate Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 3691-3727.	1.3	242
25	Climate Process Team on Internal Wave–Driven Ocean Mixing. Bulletin of the American Meteorological Society, 2017, 98, 2429-2454.	1.7	235
26	Spurious Diapycnal Mixing Associated with Advection in az-Coordinate Ocean Model. Monthly Weather Review, 2000, 128, 538-564.	0.5	223
27	OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project. Geoscientific Model Development, 2016, 9, 3231-3296.	1.3	223
28	Isoneutral Diffusion in az-Coordinate Ocean Model. Journal of Physical Oceanography, 1998, 28, 805-830.	0.7	216
29	Static domain walls in N = 1 supergravity. Nuclear Physics B, 1992, 381, 301-328.	0.9	204
30	The GFDL Global Ocean and Sea Ice Model OM4.0: Model Description and Simulation Features. Journal of Advances in Modeling Earth Systems, 2019, 11, 3167-3211.	1.3	195
31	Predictability of North Atlantic Multidecadal Climate Variability. Science, 1997, 275, 181-184.	6.0	191
32	Change in future climate due to Antarctic meltwater. Nature, 2018, 564, 53-58.	13.7	189
33	Spatial Variability of Sea Level Rise in Twenty-First Century Projections. Journal of Climate, 2010, 23, 4585-4607.	1.2	184
34	The Role of Mesoscale Eddies in the Rectification of the Southern Ocean Response to Climate Change. Journal of Physical Oceanography, 2010, 40, 1539-1557.	0.7	183
35	A Conceptual Framework for Predictability Studies. Journal of Climate, 1999, 12, 3133-3155.	1.2	178
36	A Linear Thermohaline Oscillator Driven by Stochastic Atmospheric Forcing. Journal of Climate, 1995, 8, 2440-2453.	1.2	168

#	Article	IF	CITATIONS
37	Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophysical Research Letters, 2014, 41, 4601-4610.	1.5	165
38	Impacts of Shortwave Penetration Depth on Large-Scale Ocean Circulation and Heat Transport. Journal of Physical Oceanography, 2005, 35, 1103-1119.	0.7	154
39	Improving Oceanic Overflow Representation in Climate Models: The Gravity Current Entrainment Climate Process Team. Bulletin of the American Meteorological Society, 2009, 90, 657-670.	1.7	153
40	Connecting Changing Ocean Circulation with Changing Climate. Journal of Climate, 2013, 26, 2268-2278.	1.2	152
41	A predictability study of simulated North Atlantic multidecadal variability. Climate Dynamics, 1997, 13, 459-487.	1.7	149
42	An extreme event of sea-level rise along the Northeast coast of North America in 2009–2010. Nature Communications, 2015, 6, 6346.	5.8	147
43	Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nature Communications, 2017, 8, 172.	5.8	144
44	Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP). Geoscientific Model Development, 2017, 10, 2169-2199.	1.3	137
45	Algorithms for Density, Potential Temperature, Conservative Temperature, and the Freezing Temperature of Seawater. Journal of Atmospheric and Oceanic Technology, 2006, 23, 1709-1728.	0.5	135
46	The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO ₂ forcing. Geoscientific Model Development, 2016, 9, 3993-4017.	1.3	133
47	Challenges and Prospects in Ocean Circulation Models. Frontiers in Marine Science, 2019, 6, .	1.2	133
48	North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modelling, 2016, 97, 65-90.	1.0	131
49	Challenges to Understanding the Dynamic Response of Greenland's Marine Terminating Glaciers to Oceanic and Atmospheric Forcing. Bulletin of the American Meteorological Society, 2013, 94, 1131-1144.	1.7	126
50	Spurious dianeutral mixing and the role of momentum closure. Ocean Modelling, 2012, 45-46, 37-58.	1.0	116
51	An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 2015, 93, 84-120.	1.0	107
52	The Benefits of Global High Resolution for Climate Simulation: Process Understanding and the Enabling of Stakeholder Decisions at the Regional Scale. Bulletin of the American Meteorological Society, 2018, 99, 2341-2359.	1.7	107
53	An assessment of global and regional sea level for years 1993–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 2014, 78, 35-89.	1.0	106
54	The impact of Greenland melt on local sea levels: a partially coupled analysis of dynamic and static equilibrium effects in idealized water-hosing experiments. Climatic Change, 2010, 103, 619-625.	1.7	104

#	Article	IF	CITATIONS
55	Physical processes that impact the evolution of global mean sea level in ocean climate models. Ocean Modelling, 2012, 51, 37-72.	1.0	102
56	Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development, 2020, 13, 3643-3708.	1.3	99
57	A boundary-value problem for the parameterized mesoscale eddy transport. Ocean Modelling, 2010, 32, 143-156.	1.0	98
58	Local and global gravitational aspects of domain wall space-times. Physical Review D, 1993, 48, 2613-2634.	1.6	95
59	Role of Mesoscale Eddies in Cross-Frontal Transport of Heat and Biogeochemical Tracers in the Southern Ocean. Journal of Physical Oceanography, 2015, 45, 3057-3081.	0.7	94
60	Localized rapid warming of West Antarctic subsurface waters by remote winds. Nature Climate Change, 2017, 7, 595-603.	8.1	91
61	ACCESS-OM2 v1.0: a global ocean–sea ice model at three resolutions. Geoscientific Model Development, 2020, 13, 401-442.	1.3	91
62	Climate Variability and Radiocarbon in the CM2Mc Earth System Model. Journal of Climate, 2011, 24, 4230-4254.	1.2	88
63	Has coarse ocean resolution biased simulations of transient climate sensitivity?. Geophysical Research Letters, 2014, 41, 8522-8529.	1.5	88
64	Tracer Conservation with an Explicit Free Surface Method forz-Coordinate Ocean Models. Monthly Weather Review, 2001, 129, 1081-1098.	0.5	82
65	Impacts of Parameterized Langmuir Turbulence and Nonbreaking Wave Mixing in Global Climate Simulations. Journal of Climate, 2014, 27, 4752-4775.	1.2	82
66	Different magnitudes of projected subsurface ocean warming around Greenland and Antarctica. Nature Geoscience, 2011, 4, 524-528.	5.4	81
67	An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part III: Hydrography and fluxes. Ocean Modelling, 2016, 100, 141-161.	1.0	81
68	Will high-resolution global ocean models benefit coupled predictions on short-range to climate timescales?. Ocean Modelling, 2017, 120, 120-136.	1.0	79
69	The Atlantic Meridional Overturning Circulation in Highâ€Resolution Models. Journal of Geophysical Research: Oceans, 2020, 125, e2019JC015522.	1.0	75
70	Simulated Global Swell and Wind-Sea Climate and Their Responses to Anthropogenic Climate Change at the End of the Twenty-First Century. Journal of Climate, 2014, 27, 3516-3536.	1.2	74
71	Atlantic multi-decadal oscillation covaries with Agulhas leakage. Nature Communications, 2015, 6, 10082.	5.8	71
72	Vertical resolution of baroclinic modes in global ocean models. Ocean Modelling, 2017, 113, 50-65.	1.0	71

#	Article	IF	CITATIONS
73	The Water Mass Transformation Framework for Ocean Physics and Biogeochemistry. Annual Review of Marine Science, 2019, 11, 271-305.	5.1	71
74	An assessment of Southern Ocean water masses and sea ice during 1988–2007 in a suite of interannual CORE-II simulations. Ocean Modelling, 2015, 94, 67-94.	1.0	68
75	Multidecadal Weakening of Indian Summer Monsoon Circulation Induces an Increasing Northern Indian Ocean Sea Level. Geophysical Research Letters, 2017, 44, 10,560.	1.5	67
76	Northern High-Latitude Heat Budget Decomposition and Transient Warming. Journal of Climate, 2013, 26, 609-621.	1.2	66
77	An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: Sea ice and solid freshwater. Ocean Modelling, 2016, 99, 110-132.	1.0	64
78	Preconditioning of the Weddell Sea Polynya by the Ocean Mesoscale and Dense Water Overflows. Journal of Climate, 2017, 30, 7719-7737.	1.2	62
79	The KPP Boundary Layer Scheme for the Ocean: Revisiting Its Formulation and Benchmarking Oneâ€Đimensional Simulations Relative to LES. Journal of Advances in Modeling Earth Systems, 2018, 10, 2647-2685.	1.3	62
80	Comparing Ocean Surface Boundary Vertical Mixing Schemes Including Langmuir Turbulence. Journal of Advances in Modeling Earth Systems, 2019, 11, 3545-3592.	1.3	62
81	Rapid mixing and exchange of deep-ocean waters in an abyssal boundary current. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13233-13238.	3.3	59
82	An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part II: Liquid freshwater. Ocean Modelling, 2016, 99, 86-109.	1.0	58
83	Mechanisms of Southern Ocean Heat Uptake and Transport in a Global Eddying Climate Model. Journal of Climate, 2016, 29, 2059-2075.	1.2	56
84	Rapid barotropic sea level rise from ice sheet melting. Journal of Geophysical Research, 2012, 117, .	3.3	55
85	Sea Level and the Role of Coastal Trapped Waves in Mediating the Influence of the Open Ocean on the Coast. Surveys in Geophysics, 2019, 40, 1467-1492.	2.1	55
86	Non-perturbative stability of supergravity and superstring vacua. Nuclear Physics B, 1993, 389, 3-24.	0.9	53
87	Towards Comprehensive Observing and Modeling Systems for Monitoring and Predicting Regional to Coastal Sea Level. Frontiers in Marine Science, 2019, 6, .	1.2	51
88	Carbon Dioxide and Climate: Perspectives on a Scientific Assessment. , 2013, , 391-413.		48
89	100 Years of Earth System Model Development. Meteorological Monographs, 2019, 59, 12.1-12.66.	5.0	48
90	Water Mass Exchange in the Southern Ocean in Coupled Climate Models. Journal of Physical Oceanography, 2011, 41, 1756-1771.	0.7	46

#	Article	IF	CITATIONS
91	Effects in a climate model of slope tapering in neutral physics schemes. Ocean Modelling, 2007, 16, 1-16.	1.0	44
92	Sensitivity of a global ocean model to increased run-off from Greenland. Ocean Modelling, 2006, 12, 416-435.	1.0	43
93	Sea level changes forced by Southern Ocean winds. Geophysical Research Letters, 2013, 40, 5710-5715.	1.5	41
94	ACCESS-OM: the ocean and sea-ice core of the ACCESS coupled model. Australian Meteorological Magazine, 2013, 63, 213-232.	0.4	39
95	Tropical Cyclone–Induced Thermocline Warming and Its Regional and Global Impacts. Journal of Climate, 2014, 27, 6978-6999.	1.2	35
96	Realistic test cases for limited area ocean modelling. Ocean Modelling, 2011, 37, 1-34.	1.0	33
97	Evaluating the Uncertainty Induced by the Virtual Salt Flux Assumption in Climate Simulations and Future Projections. Journal of Climate, 2010, 23, 80-96.	1.2	32
98	North and equatorial Pacific Ocean circulation in the CORE-II hindcast simulations. Ocean Modelling, 2016, 104, 143-170.	1.0	32
99	On Geometrical Aspects of Interior Ocean Mixing. Journal of Physical Oceanography, 2014, 44, 2164-2175.	0.7	31
100	Influence of Ocean and Atmosphere Components on Simulated Climate Sensitivities. Journal of Climate, 2013, 26, 231-245.	1.2	30
101	Gravitational effects in supersymmetric domain wall backgrounds. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1992, 285, 27-34.	1.5	29
102	The Deep Ocean Buoyancy Budget and Its Temporal Variability. Journal of Climate, 2014, 27, 551-573.	1.2	29
103	CO ₂ â€Induced Ocean Warming of the Antarctic Continental Shelf in an Eddying Global Climate Model. Journal of Geophysical Research: Oceans, 2017, 122, 8079-8101.	1.0	29
104	What causes the spread of model projections of ocean dynamic sea-level change in response to greenhouse gas forcing?. Climate Dynamics, 2021, 56, 155-187.	1.7	29
105	Identifying Lagrangian coherent vortices in a mesoscale ocean model. Ocean Modelling, 2018, 130, 15-28.	1.0	27
106	On Pacific Subtropical Cell Variability over the Second Half of the Twentieth Century. Journal of Climate, 2014, 27, 7102-7112.	1.2	26
107	A Primer on the Vertical Lagrangianâ€Remap Method in Ocean Models Based on Finite Volume Generalized Vertical Coordinates. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001954.	1.3	26
108	Evaluation of ACCESS climate model ocean diagnostics in CMIP5 simulations. Australian Meteorological Magazine, 2013, 63, 101-119.	0.4	26

#	Article	IF	CITATIONS
109	Sensitivity of abyssal water masses to overflow parameterisations. Ocean Modelling, 2015, 89, 84-103.	1.0	23
110	Nonextreme and Ultraextreme Domain Walls and Their Global Space-Times. Physical Review Letters, 1993, 71, 670-673.	2.9	22
111	Kinetic Energy Transfers between Mesoscale and Submesoscale Motions in the Open Ocean's Upper Layers. Journal of Physical Oceanography, 2022, 52, 75-97.	0.7	22
112	The catalytic role of the beta effect in barotropization processes. Journal of Fluid Mechanics, 2012, 709, 490-515.	1.4	21
113	Local Drivers of Marine Heatwaves: A Global Analysis With an Earth System Model. Frontiers in Climate, 2022, 4, .	1.3	21
114	Improved Simulations of Tropical Pacific Annualâ€Mean Climate in the GFDL FLOR and HiFLOR Coupled GCMs. Journal of Advances in Modeling Earth Systems, 2018, 10, 3176-3220.	1.3	20
115	Surface winds from atmospheric reanalysis lead to contrasting oceanic forcing and coastal upwelling patterns. Ocean Modelling, 2019, 133, 79-111.	1.0	20
116	An assessment of the Indian Ocean mean state and seasonal cycle in a suite of interannual CORE-II simulations. Ocean Modelling, 2020, 145, 101503.	1.0	20
117	Cauchy Horizons, Thermodynamics, and Closed Timelike Curves in Planar Supersymmetric Spaces. Physical Review Letters, 1993, 70, 1191-1194.	2.9	18
118	Roles of the Ocean Mesoscale in the Horizontal Supply of Mass, Heat, Carbon, and Nutrients to the Northern Hemisphere Subtropical Gyres. Journal of Geophysical Research: Oceans, 2018, 123, 7016-7036.	1.0	18
119	Formulating the equations of ocean models. Geophysical Monograph Series, 2008, , 281-317.	0.1	16
120	Lagrangian Timescales of Southern Ocean Upwelling in a Hierarchy of Model Resolutions. Geophysical Research Letters, 2018, 45, 891-898.	1.5	16
121	Understanding the Equatorial Pacific Cold Tongue Time-Mean Heat Budget. Part I: Diagnostic Framework. Journal of Climate, 2018, 31, 9965-9985.	1.2	16
122	Response of Storm-Related Extreme Sea Level along the U.S. Atlantic Coast to Combined Weather and Climate Forcing. Journal of Climate, 2020, 33, 3745-3769.	1.2	16
123	VENM: An Algorithm to Accurately Calculate Neutral Slopes and Gradients. Journal of Advances in Modeling Earth Systems, 2019, 11, 1917-1939.	1.3	15
124	Two skyrmion interaction for the Atiyah-Manton ansatz. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1990, 251, 1-5.	1.5	14
125	Importance of the Antarctic Slope Current in the Southern Ocean Response to Ice Sheet Melt and Wind Stress Change. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	14
126	Development of a regional model for the North Indian Ocean. Ocean Modelling, 2014, 75, 1-19.	1.0	13

#	Article	IF	CITATIONS
127	Frequency-Domain Analysis of Atmospherically Forced versus Intrinsic Ocean Surface Kinetic Energy Variability in GFDL's CM2-O Model Hierarchy. Journal of Climate, 2018, 31, 1789-1810.	1.2	13
128	On the Role of the Antarctic Slope Front on the Occurrence of the Weddell Sea Polynya under Climate Change. Journal of Climate, 2021, 34, 2529-2548.	1.2	13
129	The Geography of Numerical Mixing in a Suite of Global Ocean Models. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002333.	1.3	13
130	Ocean Climate Observing Requirements in Support of Climate Research and Climate Information. Frontiers in Marine Science, 2019, 6, .	1.2	12
131	A dynamic, embedded Lagrangian model for ocean climate models, Part II: Idealised overflow tests. Ocean Modelling, 2012, 59-60, 60-76.	1.0	11
132	Impact of climate warming on upper layer of the Bering Sea. Climate Dynamics, 2013, 40, 327-340.	1.7	11
133	Understanding the Equatorial Pacific Cold Tongue Time-Mean Heat Budget. Part II: Evaluation of the GFDL-FLOR Coupled GCM. Journal of Climate, 2018, 31, 9987-10011.	1.2	11
134	Mechanistic Drivers of Reemergence of Anthropogenic Carbon in the Equatorial Pacific. Geophysical Research Letters, 2017, 44, 9433-9439.	1.5	10
135	A dynamic, embedded Lagrangian model for ocean climate models. Part I: Theory and implementation. Ocean Modelling, 2012, 59-60, 41-59.	1.0	9
136	Role of Ocean Model Formulation in Climate Response Uncertainty. Journal of Climate, 2018, 31, 9313-9333.	1.2	9
137	Relating the Diffusive Salt Flux just below the Ocean Surface to Boundary Freshwater and Salt Fluxes. Journal of Physical Oceanography, 2019, 49, 2365-2376.	0.7	9
138	On the Superposition of Mean Advective and Eddy-Induced Transports in Global Ocean Heat and Salt Budgets. Journal of Climate, 2020, 33, 1121-1140.	1.2	9
139	Some Ocean Model Fundamentals. , 2006, , 19-73.		8
140	Comment on Tailleux, R. Neutrality versus Materiality: A Thermodynamic Theory of Neutral Surfaces. Fluids 2016, 1, 32. Fluids, 2017, 2, 19.	0.8	7
141	The Transient Response of Southern Ocean Circulation to Geothermal Heating in a Global Climate Model. Journal of Climate, 2016, 29, 5689-5708.	1.2	6
142	Role of Mixed‣ayer Instabilities in the Seasonal Evolution of Eddy Kinetic Energy Spectra in a Global Submesoscale Permitting Simulation. Geophysical Research Letters, 2021, 48, e2021GL094777.	1.5	6
143	Ocean Circulation Models and Modeling. International Geophysics, 2013, , 521-551.	0.6	5
144	Science Directions in a Post COP21 World of Transient Climate Change: Enabling Regional to Local Predictions in Support of Reliable Climate Information. Earth's Future, 2018, 6, 1498-1507.	2.4	5

#	Article	IF	CITATIONS
145	A mechanistic analysis of tropical Pacific dynamic sea level in GFDL-OM4 under OMIP-I and OMIP-II forcings. Geoscientific Model Development, 2021, 14, 2471-2502.	1.3	5
146	A General oordinate, Nonlocal Neutral Diffusion Operator. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001992.	1.3	5
147	Simulated South Atlantic transports and their variability during 1958–2007. Ocean Modelling, 2015, 91, 70-90.	1.0	4
148	The interpretation of temperature and salinity variables in numerical ocean model output and the calculation of heat fluxes and heat content. Geoscientific Model Development, 2021, 14, 6445-6466.	1.3	4
149	A Potential Energy Analysis of Ocean Surface Mixed Layers. Journal of Geophysical Research: Oceans, 2022, 127, .	1.0	4
150	Geoscientists, Who Have Documented the Rapid and Accelerating Climate Crisis for Decades, Are Now Pleading for Immediate Collective Action. Geophysical Research Letters, 2021, 48, e2021GL096644.	1.5	3
151	Preface to the Ocean Modelling special issue on ocean eddies. Ocean Modelling, 2011, 39, 1.	1.0	2
152	Concerning the Aims and Scope for <i>JAMES</i> . Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002567.	1.3	2
153	Effects of grid spacing on high-frequency precipitation variance in coupled high-resolution global ocean–atmosphere models. Climate Dynamics, 2022, 59, 2887-2913.	1.7	2
154	An Introduction to Ocean Climate Modeling. , 2003, , 55-79.		1
155	On the Discrete Normal Modes of Quasigeostrophic Theory. Journal of Physical Oceanography, 2022, 52, 243-259.	0.7	1
156	An Introduction to Linear Predictability Analysis. , 2003, , 80-101.		0
157	Thank You to Our 2017 Peer Reviewers. Journal of Advances in Modeling Earth Systems, 2018, 10, 1735-1735.	1.3	Ο
158	Thank You to Our 2018 Peer Reviewers. Journal of Advances in Modeling Earth Systems, 2019, 11, 862-862.	1.3	0
159	Thank You to Our 2019 Reviewers. Journal of Advances in Modeling Earth Systems, 2020, 12, e2020MS002112.	1.3	0
160	Thank You to Our 2020 Reviewers. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002494.	1.3	0
161	Thank You to Our 2021 Reviewers. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	0