
## **Zhengzong Sun**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4172204/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                    | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Improved Synthesis of Graphene Oxide. ACS Nano, 2010, 4, 4806-4814.                                                                        | 7.3  | 10,035    |
| 2  | Growth of graphene from solid carbon sources. Nature, 2010, 468, 549-552.                                                                  | 13.7 | 1,234     |
| 3  | Reduction of Graphene Oxide <i>via</i> Bacterial Respiration. ACS Nano, 2010, 4, 4852-4856.                                                | 7.3  | 539       |
| 4  | Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes. ACS Nano, 2010, 4,<br>2059-2069.                                | 7.3  | 539       |
| 5  | Toward the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper Foils. ACS Nano, 2012, 6, 9110-9117.                                 | 7.3  | 537       |
| 6  | High-Yield Organic Dispersions of Unfunctionalized Graphene. Nano Letters, 2009, 9, 3460-3462.                                             | 4.5  | 481       |
| 7  | A seamless three-dimensional carbon nanotube graphene hybrid material. Nature Communications, 2012, 3, 1225.                               | 5.8  | 456       |
| 8  | Growth of Graphene from Food, Insects, and Waste. ACS Nano, 2011, 5, 7601-7607.                                                            | 7.3  | 454       |
| 9  | 3D Printable Graphene Composite. Scientific Reports, 2015, 5, 11181.                                                                       | 1.6  | 337       |
| 10 | Resistive Switches and Memories from Silicon Oxide. Nano Letters, 2010, 10, 4105-4110.                                                     | 4.5  | 293       |
| 11 | Rational Design of Hybrid Graphene Films for High-Performance Transparent Electrodes. ACS Nano, 2011, 5, 6472-6479.                        | 7.3  | 290       |
| 12 | Two-dimensional non-volatile programmable p–n junctions. Nature Nanotechnology, 2017, 12, 901-906.                                         | 15.6 | 278       |
| 13 | Growth of Bilayer Graphene on Insulating Substrates. ACS Nano, 2011, 5, 8187-8192.                                                         | 7.3  | 269       |
| 14 | Direct Growth of Bilayer Graphene on SiO <sub>2</sub> Substrates by Carbon Diffusion through<br>Nickel. ACS Nano, 2011, 5, 8241-8247.      | 7.3  | 260       |
| 15 | Graphene Chemistry: Synthesis and Manipulation. Journal of Physical Chemistry Letters, 2011, 2, 2425-2432.                                 | 2.1  | 237       |
| 16 | Terahertz and Infrared Spectroscopy of Gated Large-Area Graphene. Nano Letters, 2012, 12, 3711-3715.                                       | 4.5  | 235       |
| 17 | Layer-by-Layer Removal of Graphene for Device Patterning. Science, 2011, 331, 1168-1172.                                                   | 6.0  | 221       |
| 18 | Highly Conductive Graphene Nanoribbons by Longitudinal Splitting of Carbon Nanotubes Using<br>Potassium Vapor. ACS Nano, 2011, 5, 968-974. | 7.3  | 204       |

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Large-Area Bernal-Stacked Bi-, Tri-, and Tetralayer Graphene. ACS Nano, 2012, 6, 9790-9796.                                                                       | 7.3 | 163       |
| 20 | Towards hybrid superlattices in graphene. Nature Communications, 2011, 2, 559.                                                                                    | 5.8 | 145       |
| 21 | Soluble graphene through edge-selective functionalization. Nano Research, 2010, 3, 117-125.                                                                       | 5.8 | 128       |
| 22 | Controlled Modulation of Electronic Properties of Graphene by Self-Assembled Monolayers on SiO <sub>2</sub> Substrates. ACS Nano, 2011, 5, 1535-1540.             | 7.3 | 100       |
| 23 | Epitaxial Growth and Integration of Insulating Metal–Organic Frameworks in Electrochemistry.<br>Journal of the American Chemical Society, 2019, 141, 11322-11327. | 6.6 | 98        |
| 24 | Transforming Carbon Nanotube Devices into Nanoribbon Devices. Journal of the American Chemical Society, 2009, 131, 13460-13463.                                   | 6.6 | 90        |
| 25 | Highâ€Performance Waferâ€5cale MoS <sub>2</sub> Transistors toward Practical Application. Small,<br>2018, 14, e1803465.                                           | 5.2 | 88        |
| 26 | Controlled Doping of Waferâ€5cale PtSe <sub>2</sub> Films for Device Application. Advanced<br>Functional Materials, 2019, 29, 1805614.                            | 7.8 | 87        |
| 27 | Three dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates. Carbon, 2011, 49, 4890-4897.                            | 5.4 | 84        |
| 28 | Largely Tunable Band Structures of Few-Layer InSe by Uniaxial Strain. ACS Applied Materials &<br>Interfaces, 2018, 10, 3994-4000.                                 | 4.0 | 84        |
| 29 | Single Faceted Two-Dimensional Mo <sub>2</sub> C Electrocatalyst for Highly Efficient Nitrogen Fixation. ACS Catalysis, 2020, 10, 7864-7870.                      | 5.5 | 80        |
| 30 | Biocompatibility of pristine graphene for neuronal interface. Journal of Neurosurgery: Pediatrics, 2013, 11, 575-583.                                             | 0.8 | 79        |
| 31 | Chemical and Bandgap Engineering in Monolayer Hexagonal Boron Nitride. Scientific Reports, 2017, 7,<br>45584.                                                     | 1.6 | 73        |
| 32 | Closed-Edged Graphene Nanoribbons from Large-Diameter Collapsed Nanotubes. ACS Nano, 2012, 6,<br>6023-6032.                                                       | 7.3 | 65        |
| 33 | Revisiting the Role of Active Sites for Hydrogen Evolution Reaction through Precise Defect Adjusting.<br>Advanced Functional Materials, 2019, 29, 1901290.        | 7.8 | 61        |
| 34 | CO <sub>2</sub> Reduction on Copper's Twin Boundary. ACS Catalysis, 2020, 10, 2026-2032.                                                                          | 5.5 | 60        |
| 35 | Metal–Organic Framework for Transparent Electronics. Advanced Science, 2020, 7, 1903003.                                                                          | 5.6 | 59        |
| 36 | Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema.<br>ELife, 2015, 4, e09623.                                      | 2.8 | 59        |

3

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Quantitative Analysis of Structure and Bandgap Changes in Graphene Oxide Nanoribbons during<br>Thermal Annealing. Journal of the American Chemical Society, 2012, 134, 11774-11780.          | 6.6 | 55        |
| 38 | Single-Atom Electroplating on Two Dimensional Materials. Chemistry of Materials, 2019, 31, 429-435.                                                                                          | 3.2 | 55        |
| 39 | Largeâ€area high quality PtSe <sub>2</sub> thin film with versatile polarity. InformaÄnÃ-Materiály, 2019, 1,<br>260-267.                                                                     | 8.5 | 54        |
| 40 | <i>Thalia dealbata</i> Inspired Anisotropic Cellular Biomass Derived Carbonaceous Aerogel. ACS<br>Sustainable Chemistry and Engineering, 2018, 6, 17152-17159.                               | 3.2 | 51        |
| 41 | Synthesis of functional polypyrrole/prussian blue and polypyrrole/Ag composite microtubes by using a reactive template. Nanotechnology, 2007, 18, 195603.                                    | 1.3 | 49        |
| 42 | Solution-Phase Synthesis of Heteroatom-Substituted Carbon Scaffolds for Hydrogen Storage. Journal of the American Chemical Society, 2010, 132, 15246-15251.                                  | 6.6 | 47        |
| 43 | Pristine Graphene Electrode in Hydrogen Evolution Reaction. ACS Applied Materials & Interfaces, 2017, 9, 4643-4648.                                                                          | 4.0 | 47        |
| 44 | An in-memory computing architecture based on two-dimensional semiconductors for multiply-accumulate operations. Nature Communications, 2021, 12, 3347.                                       | 5.8 | 46        |
| 45 | Morphology-controlled synthesis of $\hat{i}$ ±-FeOOH and its derivatives. Nanotechnology, 2007, 18, 455607.                                                                                  | 1.3 | 45        |
| 46 | In situ Synthesis of Polymer-Modified Mesoporous Carbon CMK-3 Composites for CO <sub>2</sub><br>Sequestration. ACS Applied Materials & Interfaces, 2011, 3, 4782-4786.                       | 4.0 | 45        |
| 47 | Radical addition of perfluorinated alkyl iodides to multi-layered graphene and single-walled carbon<br>nanotubes. Nano Research, 2010, 3, 138-145.                                           | 5.8 | 44        |
| 48 | Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning. Nature Communications, 2021, 12, 5953.                               | 5.8 | 42        |
| 49 | Supergrowth of Nitrogen-Doped Single-Walled Carbon Nanotube Arrays: Active Species, Dopant<br>Characterization, and Doped/Undoped Heterojunctions. ACS Nano, 2011, 5, 6925-6934.             | 7.3 | 37        |
| 50 | Wafer-scale transferred multilayer MoS <sub>2</sub> for high performance field effect transistors.<br>Nanotechnology, 2019, 30, 174002.                                                      | 1.3 | 37        |
| 51 | Vibrational Imaging and Quantification of Two-Dimensional Hexagonal Boron Nitride with Stimulated<br>Raman Scattering. ACS Nano, 2019, 13, 14033-14040.                                      | 7.3 | 35        |
| 52 | Direct electrosynthesis of 52% concentrated CO on silver's twin boundary. Nature Communications, 2021, 12, 2139.                                                                             | 5.8 | 34        |
| 53 | Controlled Ambipolarâ€toâ€Unipolar Conversion in Graphene Fieldâ€Effect Transistors Through Surface<br>Coating with Poly(ethylene imine)/Poly(ethylene glycol) Films. Small, 2012, 8, 59-62. | 5.2 | 33        |
| 54 | A novel inorganic–organic polymer electrolyte with a high conductivity: insertion of poly(ethylene)<br>oxide into LiV3O8in one step. Journal of Materials Chemistry, 2005, 15, 1369-1374.    | 6.7 | 30        |

| #  | Article                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Drastic enhancement of the Raman intensity in few-layer InSe by uniaxial strain. Physical Review B, 2019, 99, .                                               | 1.1  | 28        |
| 56 | FIBâ€Patterned Nanoâ€Supercapacitors: Minimized Size with Ultrahigh Performances. Advanced Materials,<br>2020, 32, e1908072.                                  | 11.1 | 25        |
| 57 | High Throughput Preparation of Large Area Transparent Electrodes Using Non-Functionalized<br>Graphene Nanoribbons. Chemistry of Materials, 2011, 23, 935-939. | 3.2  | 22        |
| 58 | Effect of anchor and functional groups in functionalized graphene devices. Nano Research, 2013, 6,<br>138-148.                                                | 5.8  | 22        |
| 59 | Graphenization of Diamond. Chemistry of Materials, 2022, 34, 3941-3947.                                                                                       | 3.2  | 22        |
| 60 | Optimizing Nonlinear Optical Visibility of Two-Dimensional Materials. ACS Applied Materials &<br>Interfaces, 2017, 9, 34448-34455.                            | 4.0  | 20        |
| 61 | Passâ€Transistor Logic Circuits Based on Waferâ€Scale 2D Semiconductors. Advanced Materials, 2022, 34, .                                                      | 11.1 | 20        |
| 62 | Towards the standardization of graphene growth through carbon depletion, refilling and nucleation. Carbon, 2017, 119, 350-354.                                | 5.4  | 19        |
| 63 | Billiard Catalysis at Ti3C2 MXene/MAX Heterostructure for Efficient Nitrogen Fixation. Applied<br>Catalysis B: Environmental, 2022, 317, 121755.              | 10.8 | 17        |
| 64 | Cation-Exchange Approach to Tuning the Flexibility of a Metal–Organic Framework for Gated<br>Adsorption. Inorganic Chemistry, 2017, 56, 5069-5075.            | 1.9  | 16        |
| 65 | Layer-by-Layer AB-Stacked Bilayer Graphene Growth Through an Asymmetric Oxygen Gateway. Chemistry of Materials, 2019, 31, 6105-6109.                          | 3.2  | 16        |
| 66 | Ranking the relative CO2 electrochemical reduction activity in carbon materials. Carbon, 2019, 154, 108-114.                                                  | 5.4  | 14        |
| 67 | Enhanced lubricity of CVD diamond films by in-situ synthetization of top-layered graphene sheets.<br>Carbon, 2021, 184, 680-688.                              | 5.4  | 12        |
| 68 | CO2 reduction with coin catalyst. Nano Research, 2022, 15, 3859-3865.                                                                                         | 5.8  | 9         |
| 69 | Microscopic Mechanisms Behind the High Friction and Failure Initiation of Graphene Wrinkles.<br>Langmuir, 2021, 37, 6776-6782.                                | 1.6  | 8         |
| 70 | Dichroic Photoelasticity in Black Phosphorus Revealed by Ultrafast Coherent Phonon Dynamics.<br>Journal of Physical Chemistry Letters, 2021, 12, 5871-5878.   | 2.1  | 8         |
| 71 | Reversing the Polarity of MoS <sub>2</sub> with PTFE. ACS Applied Materials & Interfaces, 2021, 13, 46117-46124.                                              | 4.0  | 6         |
| 72 | Precise CO <sub>2</sub> Reduction for Bilayer Graphene. ACS Central Science, 2022, 8, 394-401.                                                                | 5.3  | 6         |

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Precise lateral control of graphene via living zigzag edges. Carbon, 2020, 167, 718-723.                                                                                | 5.4 | 4         |
| 74 | Realization of controllable graphene p–n junctions through gate dielectric engineering. RSC<br>Advances, 2015, 5, 80496-80500.                                          | 1.7 | 3         |
| 75 | Phase, Conductivity, and Surface Coordination Environment in Two-Dimensional Electrochemistry.<br>ACS Applied Materials & Interfaces, 2019, 11, 25108-25114.            | 4.0 | 3         |
| 76 | The mechanisms of friction enhancements on graphene surfaces with folds: The reinforcement of atomic pinning or attraction. Tribology International, 2022, 165, 107297. | 3.0 | 3         |
| 77 | Strain-Induced Nonlinear Frictional Behavior of Graphene Nanowall Films. ACS Applied Materials<br>& Interfaces, 2021, 13, 51608-51617.                                  | 4.0 | 2         |
| 78 | Terahertz and infrared conductivity of large-area graphene. , 2011, , .                                                                                                 |     | 0         |
| 79 | Cyclotron resonance in graphene at ultrahigh magnetic fields. , 2011, , .                                                                                               |     | Ο         |