Jessica L Whited

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4171874/publications.pdf

Version: 2024-02-01

471509 580821 1,701 30 17 25 citations h-index g-index papers 33 33 33 2597 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Systemic Cell Cycle Reâ€entry Following Amputation in Axolotl: Consequence and Mechanism. FASEB Journal, 2022, 36, .	0.5	O
2	Salamander models for elucidating mechanisms of developmental biology, evolution, and regeneration: Part two. Developmental Dynamics, 2022, 251, 903-905.	1.8	0
3	Engineered myosins drive filopodial transport. Nature Cell Biology, 2021, 23, 113-115.	10.3	O
4	A cross-species analysis of systemic mediators of repair and complex tissue regeneration. Npj Regenerative Medicine, 2021, 6, 21.	5.2	11
5	Finding Solutions for Fibrosis: Understanding the Innate Mechanisms Used by Superâ€Regenerator Vertebrates to Combat Scarring. Advanced Science, 2021, 8, e2100407.	11.2	17
6	Salamander models for elucidating mechanisms of developmental biology, evolution, and regeneration: Part one. Developmental Dynamics, 2021, 250, 750-752.	1.8	1
7	Single cell biology—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 74-97.	3.8	3
8	Discussing limb development and regeneration in Barcelona: The future is at hand. Developmental Dynamics, 2020, 249, 160-163.	1.8	1
9	Parallels between wound healing, epimorphic regeneration and solid tumors. Development (Cambridge), 2020, 147, .	2.5	22
_			
10	Cover Image: Volume 22, Issue 4. Evolution & Development, 2020, 22, i.	2.0	0
10	Cover Image: Volume 22, Issue 4. Evolution & Development, 2020, 22, i. von Willebrand factor D and EGF domains is an evolutionarily conserved and required feature of blastemas capable of multitissue appendage regeneration. Evolution & Development, 2020, 22, 297-311.	2.0	0 25
	von Willebrand factor D and EGF domains is an evolutionarily conserved and required feature of		
11	von Willebrand factor D and EGF domains is an evolutionarily conserved and required feature of blastemas capable of multitissue appendage regeneration. Evolution & Development, 2020, 22, 297-311. Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb	2.0	25
11 12	von Willebrand factor D and EGF domains is an evolutionarily conserved and required feature of blastemas capable of multitissue appendage regeneration. Evolution & Development, 2020, 22, 297-311. Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb regeneration. ELife, 2020, 9, .	2.0	25
11 12 13	von Willebrand factor D and EGF domains is an evolutionarily conserved and required feature of blastemas capable of multitissue appendage regeneration. Evolution & Development, 2020, 22, 297-311. Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb regeneration. ELife, 2020, 9, . Discovery of several thousand highly diverse circular DNA viruses. ELife, 2020, 9, .	2.0 6.0 6.0	25 23 131
11 12 13	von Willebrand factor D and EGF domains is an evolutionarily conserved and required feature of blastemas capable of multitissue appendage regeneration. Evolution & Development, 2020, 22, 297-311. Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb regeneration. ELife, 2020, 9, . Discovery of several thousand highly diverse circular DNA viruses. ELife, 2020, 9, . Development: How Tadpoles ROC Tail Regeneration. Current Biology, 2019, 29, R756-R758. Treatment with Human Amniotic Suspension Allograft Improves Tendon Healing in a Rat Model of	2.0 6.0 6.0 3.9	25 23 131 2
11 12 13 14	von Willebrand factor D and EGF domains is an evolutionarily conserved and required feature of blastemas capable of multitissue appendage regeneration. Evolution & Development, 2020, 22, 297-311. Eya2 promotes cell cycle progression by regulating DNA damage response during vertebrate limb regeneration. ELife, 2020, 9, . Discovery of several thousand highly diverse circular DNA viruses. ELife, 2020, 9, . Development: How Tadpoles ROC Tail Regeneration. Current Biology, 2019, 29, R756-R758. Treatment with Human Amniotic Suspension Allograft Improves Tendon Healing in a Rat Model of Collagenase-Induced Tendinopathy. Cells, 2019, 8, 1411. Bioelectrical controls of morphogenesis: from ancient mechanisms of cell coordination to	2.0 6.0 6.0 3.9	25 23 131 2 17

#	Article	IF	CITATIONS
19	Systemic cell cycle activation is induced following complex tissue injury in axolotl. Developmental Biology, 2018, 433, 461-472.	2.0	47
20	Transcriptomic landscape of the blastema niche in regenerating adult axolotl limbs at single-cell resolution. Nature Communications, 2018, 9, 5153.	12.8	133
21	A Tissue-Mapped Axolotl De Novo Transcriptome Enables Identification of Limb Regeneration Factors. Cell Reports, 2017, 18, 762-776.	6.4	752
22	Repeated removal of developing limb buds permanently reduces appendage size in the highly-regenerative axolotl. Developmental Biology, 2017, 424, 1-9.	2.0	31
23	Advances in Decoding Axolotl Limb Regeneration. Trends in Genetics, 2017, 33, 553-565.	6.7	74
24	Identification of regenerative roadblocks via repeat deployment of limb regeneration in axolotls. Npj Regenerative Medicine, 2017, 2, 30.	5.2	42
25	Neuregulin-1 signaling is essential for nerve-dependent axolotl limb regeneration. Development (Cambridge), 2016, 143, 2724-31.	2.5	83
26	Pseudotyped retroviruses for infecting axolotl <i>in vivo</i> and <i>in vitro</i> . Development (Cambridge), 2013, 140, 1137-1146.	2.5	48
27	Inducible genetic system for the axolotl. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13662-13667.	7.1	41
28	Dynamic expression of two thrombospondins during axolotl limb regeneration. Developmental Dynamics, 2011, 240, 1249-1258.	1.8	26
29	Regeneration review reprise. Journal of Biology, 2010, 9, 15.	2.7	13
30	Limb regeneration revisited, Journal of Biology, 2009, 8, 5.	2.7	25