Edel Perez Lopez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4171475/publications.pdf

Version: 2024-02-01

777949 759306 53 627 13 22 citations h-index g-index papers 59 59 59 457 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<i>Plasmodiophora brassicae</i> CBM18 Proteins Bind Chitin and Suppress Chitin-Triggered Immunity. PhytoFrontiers, 2022, 2, 21-29.	0.8	9
2	<i>Plasmodiophora brassicae</i> in Mexico: From Anecdote to Fact. Plant Disease, 2022, 106, 1832-1836.	0.7	3
3	First report of a â€~ <i>Candidatus</i> Phytoplasma asteris' strain affecting lingonberry (<i>Vaccinium) Tj ETG</i>	Qq1,1 0.78	84314 rgBT <mark>/</mark> C
4	First Report of Powdery Mildew Caused by <i>Golovinomyces ambrosiae</i> on <i>Cannabis sativa</i> (Marijuana) in Quebec, Canada. Plant Disease, 2022, 106, 2747.	0.7	1
5	A clubroot pathogen effector targets cruciferous cysteine proteases to suppress plant immunity. Virulence, 2021, 12, 2327-2340.	1.8	23
6	Molecular characterization of a 'Candidatus Phytoplasma asteris'-related strain (16SrI-B / cpn60UT I-IB) affecting daisies (Argyranthemum spp.) in Mexico. Australasian Plant Disease Notes, 2021, 16, 1.	0.4	1
7	Looking for a Cultured Surrogate for Effectome Studies of the Clubroot Pathogen. Frontiers in Microbiology, 2021, 12, 650307.	1.5	1
8	Strawberry Green Petal Disease: A Diagnostic Guide. Plant Health Progress, 2021, 22, 591-595.	0.8	3
9	Endomembrane-Targeting Plasmodiophora brassicae Effectors Modulate PAMP Triggered Immune Responses in Plants. Frontiers in Microbiology, 2021, 12, 651279.	1.5	19
10	First evidence of the occurrence of a putative new subgroup of <i>Candidatus</i> Phytoplasma asteris' (16Srl) associated with strawberry green petal disease in Quebec, Canada. New Disease Reports, 2021, 44, e12038.	0.4	3
11	Digitalization of Clubroot Disease Index, a Long Overdue Task. Horticulturae, 2021, 7, 241.	1.2	3
12	Detection of blueberry stunt phytoplasma in Eastern Canada using cpn60-based molecular diagnostic assays. Scientific Reports, 2021, 11, 22118.	1.6	4
13	Molecular characterization of 'Candidatus Phytoplasma australasia' 16Srll subgroups associated with eggplant, cabbage, beetroot, and celery in Saudi Arabia. Crop Protection, 2020, 127, 104970.	1.0	6
14	ClubrootTracker: A Resource to Plan a Clubroot-Free Farm. Plant Health Progress, 2020, 21, 185-187.	0.8	4
15	The Host Range of Subgroup 16SrII-X Phytoplasma Extends to Globe Amaranth and Other Wild Plants in Saudi Arabia. Plant Health Progress, 2020, 21, 197-198.	0.8	2
16	A Rapid, Simple, Laboratory and Field-Adaptable DNA Extraction and Diagnostic Method Suitable for Insect-Transmitted Plant Pathogen and Insect Identification. Plant Health Progress, 2020, 21, 63-68.	0.8	11
17	Transcriptome Analysis Identifies <i>Plasmodiophora brassicae</i> Secondary Infection Effector Candidates. Journal of Eukaryotic Microbiology, 2020, 67, 337-351.	0.8	38
18	First Report of Bougainvillea Floral Bract Proliferation Disease in Cuba and Its Association with Phytoplasmal Infection. Plant Disease, 2020, 104, 967-967.	0.7	0

#	Article	IF	CITATIONS
19	The CpnClassiPhyR Is a Resource for <i>cpn</i> 60 Universal Target-Based Classification of Phytoplasmas. Plant Disease, 2019, 103, 2494-2497.	0.7	12
20	Progress and Obstacles in Culturing â€~ <i>Candidatus</i> Liberibacter asiaticus', the Bacterium Associated with Huanglongbing. Phytopathology, 2019, 109, 1092-1101.	1.1	61
21	Clubroot disease in Latin America: distribution and management strategies. Plant Pathology, 2019, 68, 827-833.	1.2	35
22	First Report of Sugarcane Yellow Leaf Disease in Mexico and Detection of â€~Candidatus Phytoplasma asteris'-Related Strains in Affected Plants. Plant Disease, 2019, 103, 1015.	0.7	1
23	The CpnClassiPhyR Facilitates Phytoplasma Classification and Taxonomy Using cpn60 Universal Target Sequences. Sustainability in Plant and Crop Protection, 2019, , 1-27.	0.2	1
24	A novel â€ ⁻ Candidatus Phytoplasma asterisâ€ [™] subgroup 16Srl-(E/Al)Al associated with blueberry stunt disease in eastern Canada. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 322-332.	0.8	11
25	Diversity of Phytoplasmas in Cuba, Their Geographic Isolation and Potential Development of Management Strategies. Sustainability in Plant and Crop Protection, 2019, , 87-103.	0.2	2
26	Maize bushy stunt in native corn: implications for Mexican "subsistence farmers― Environment, Development and Sustainability, 2018, 20, 1797-1805.	2.7	6
27	Identification of grass white leaf disease associated with a †Candidatus Phytoplasma asterisâ€	0.8	3
28	16SrII phytoplasma associated with date palm and Mexican fan palm in Saudi Arabia. Australasian Plant Disease Notes, 2018, 13, 1.	0.4	8
29	Genome Sequence of a Plant-Pathogenic Bacterium, "Candidatus Phytoplasma asteris―Strain TW1. Microbiology Resource Announcements, 2018, 7, .	0.3	16
30	Commentary: Phyllostomid bat microbiome composition is associated to host phylogeny and feeding strategies. Frontiers in Microbiology, 2018, 9, 2863.	1.5	2
31	Identification of Plasmodiophora brassicae effectors — A challenging goal. Virulence, 2018, 9, 1344-1353.	1.8	35
32	Molecular identification and characterization of the new 16SrIX-J and cpn60 UT IX-J phytoplasma subgroup associated with chicory bushy stunt disease in Saudi Arabia. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 518-522.	0.8	13
33	Potato purple top disease associated with the novel subgroup 16Srll-X phytoplasma. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 3678-3682.	0.8	9
34	Detection of Maize Bushy Stunt Phytoplasma in Leafhoppers Collected in Native Corn Crops Grown at High Elevations in Southeast Mexico. Florida Entomologist, 2018, 101, 12-19.	0.2	3
35	First Report of a New Jojoba (Simmondsia chinensis) Witches'-Broom Disease in Saudi Arabia and its Association With Infection by a †Candidatus Phytoplasma australasiae'-Related Phytoplasma Strain. Plant Disease, 2017, 101, 1540-1540.	0.7	10
36	Detection and Typing of "Candidatus Phytoplasma ―spp. in Host DNA Extracts Using Oligonucleotide-Coupled Fluorescent Microspheres. Methods in Molecular Biology, 2017, 1616, 121-136.	0.4	2

3

#	Article	IF	Citations
37	†Candidatus Phytoplasma brasilienseâ€. related strains associated with papaya bunchy top disease in northern Peru represent a distinct geographic lineage. Crop Protection, 2017, 92, 99-106.	1.0	7
38	Molecular diagnostic assays based on cpn60 UT sequences reveal the geographic distribution of subgroup 16SrXIII-(A/I)I phytoplasma in Mexico. Scientific Reports, 2017, 7, 950.	1.6	22
39	Novel phytoplasma strains of Xâ€disease group unveil genetic markers that distinguish North American and South American geographic lineages within subgroups 16Srlllâ€) and 16Srlllâ€U. Annals of Applied Biology, 2017, 171, 405-416.	1.3	8
40	First Report of a New Grapevine Yellows Disease in Peru and its Association With Infection by a â€~ <i>Candidatus</i> Phytoplasma brasiliense'-Related Phytoplasma Strain. Plant Disease, 2017, 101, 502-502.	0.7	5
41	Ten simple rules for successfully completing a graduate degree in Latin America. PLoS Computational Biology, 2017, 13, e1005682.	1.5	3
42	Phytoplasma classification and phylogeny based on in silico and in vitro RFLP analysis of cpn60 universal target sequences. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 5600-5613.	0.8	19
43	Maize bushy stunt phytoplasma affects native corn at high elevations in Southeast Mexico. European Journal of Plant Pathology, 2016, 145, 963-971.	0.8	34
44	Periwinkle proliferation disease associated with 16Srl-B phytoplasma in Mexico. Tropical Plant Pathology, 2016, 41, 254-257.	0.8	4
45	The underestimated diversity of phytoplasmas in Latin America. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 492-513.	0.8	64
46	Detection and identification of the heterogeneous novel subgroup 16SrXIII-(A/I)I phytoplasma associated with strawberry green petal disease and Mexican periwinkle virescence. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4406-4415.	0.8	18
47	Absence of Corn Stunt Spiroplasma and Maize Bushy Stunt Phytoplasma in Leafhoppers (Hemiptera:) Tj ETQq1 1 2015, 98, 967-969.	0.784314 0.2	rgBT /Overl 7
48	Rickettsia-related bacteria associated with papaya plants showing bunchy top disease in Cuba. Journal of General Plant Pathology, 2015, 81, 166-168.	0.6	13
49	Molecular Diagnostic Tools for Detection and Differentiation of Phytoplasmas Based on Chaperonin-60 Reveal Differences in Host Plant Infection Patterns. PLoS ONE, 2014, 9, e116039.	1.1	43
50	First report of a â€~ <i>Candidatus</i> Phytoplasma asteris' isolate affecting macadamia nut trees in Cuba. New Disease Reports, 2013, 28, 1-1.	0.4	7
51	First report of a â€~ <i>Candidatus</i> Phytoplasma ulmi' isolate affecting sapodilla trees in western Cuba. New Disease Reports, 2013, 28, 18-18.	0.4	4
52	From the Soil to the Club in the Roots: Clubroot. Frontiers for Young Minds, 0, 9, .	0.8	0
53	Detection, symptomatology and management of aster yellows disease in canola , 0, , 233-246.		5