Sung-Kyun Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4171250/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Understanding the Degradation Mechanisms of LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode Material in Lithium Ion Batteries. Advanced Energy Materials, 2014, 4, 1300787.	10.2	893
2	Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries. Advanced Materials, 2018, 30, e1704682.	11.1	366
3	Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nature Materials, 2020, 19, 419-427.	13.3	328
4	Unexpected discovery of low-cost maricite NaFePO ₄ as a high-performance electrode for Na-ion batteries. Energy and Environmental Science, 2015, 8, 540-545.	15.6	299
5	Anomalous Jahn–Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries. Energy and Environmental Science, 2015, 8, 3325-3335.	15.6	175
6	A new catalyst-embedded hierarchical air electrode for high-performance Li–O2 batteries. Energy and Environmental Science, 2013, 6, 3570.	15.6	152
7	Nanoscale Phenomena in Lithium-Ion Batteries. Chemical Reviews, 2020, 120, 6684-6737.	23.0	142
8	Review—Lithium-Excess Layered Cathodes for Lithium Rechargeable Batteries. Journal of the Electrochemical Society, 2015, 162, A2447-A2467.	1.3	141
9	Highâ€Performance Hybrid Supercapacitor Based on Grapheneâ€Wrapped Li ₄ Ti ₅ O ₁₂ and Activated Carbon. ChemElectroChem, 2014, 1, 125-130.	1.7	137
10	Multi-redox Molecule for High-Energy Redox Flow Batteries. Joule, 2018, 2, 1771-1782.	11.7	123
11	Suppression of Voltage Decay through Manganese Deactivation and Nickel Redox Buffering in Highâ€Energy Layered Lithiumâ€Rich Electrodes. Advanced Energy Materials, 2018, 8, 1800606.	10.2	97
12	Lithium-free transition metal monoxides for positive electrodes in lithium-ion batteries. Nature Energy, 2017, 2, .	19.8	94
13	Highâ€Voltageâ€Driven Surface Structuring and Electrochemical Stabilization of Niâ€Rich Layered Cathode Materials for Li Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 2000521.	10.2	90
14	Understanding the effects of chemical reactions at the cathode–electrolyte interface in sulfide based all-solid-state batteries. Journal of Materials Chemistry A, 2019, 7, 22967-22976.	5.2	80
15	Unveiling the Intrinsic Cycle Reversibility of a LiCoO ₂ Electrode at 4.8-V Cutoff Voltage through Subtractive Surface Modification for Lithium-Ion Batteries. Nano Letters, 2019, 19, 29-37.	4.5	78
16	Charge-transfer complexes for high-power organic rechargeable batteries. Energy Storage Materials, 2019, 20, 462-469.	9.5	70
17	Bio-inspired Molecular Redesign of a Multi-redox Catholyte for High-Energy Non-aqueous Organic Redox Flow Batteries. CheM, 2019, 5, 2642-2656.	5.8	61
18	Pliable Lithium Superionic Conductor for All-Solid-State Batteries. ACS Energy Letters, 2021, 6, 2006-2015.	8.8	46

SUNG-KYUN JUNG

#	Article	IF	CITATIONS
19	A new lithium diffusion model in layered oxides based on asymmetric but reversible transition metal migration. Energy and Environmental Science, 2020, 13, 1269-1278.	15.6	39
20	Simultaneous anionic and cationic redox. Nature Energy, 2017, 2, 912-913.	19.8	21
21	Unveiling the Role of Transitionâ€Metal Ions in the Thermal Degradation of Layered Ni–Co–Mn Cathodes for Lithium Rechargeable Batteries. Advanced Functional Materials, 2022, 32, .	7.8	21
22	New Iron-Based Intercalation Host for Lithium-Ion Batteries. Chemistry of Materials, 2018, 30, 1956-1964.	3.2	20
23	NaF–FeF2 nanocomposite: New type of Na-ion battery cathode material. Nano Research, 2017, 10, 4388-4397.	5.8	17
24	Intrinsic Nanodomains in Triplite LiFeSO ₄ F and Its Implication in Lithiumâ€Ion Diffusion. Advanced Energy Materials, 2018, 8, 1701408.	10.2	16
25	Highly Stable Fe ²⁺ /Ti ³⁺ â€Based Fluoride Cathode Enabling Low ost and Highâ€Performance Naâ€lon Batteries. Advanced Functional Materials, 2022, 32, .	7.8	11
26	In operando formation of new iron-oxyfluoride host structure for Na-ion storage from NaF–FeO nanocomposite. Energy Storage Materials, 2019, 23, 427-433.	9.5	8
27	Chemical Origins of Electrochemical Overpotential in Surfaceâ€Conversion Nanocomposite Cathodes. Advanced Energy Materials, 2019, 9, 1900503.	10.2	6