Alberto Barsella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4171025/publications.pdf

Version: 2024-02-01

567281 713466 21 804 15 21 citations h-index g-index papers 21 21 21 805 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Push–Pull Derivatives Based on 2,4′-Biphenylene Linker with Quinoxaline, [1,2,5]Oxadiazolo[3,4-B]Pyrazine and [1,2,5]Thiadiazolo[3,4-B]Pyrazine Electron Withdrawing Parts. Molecules, 2022, 27, 4250.	3.8	12
2	Synthesis, photophysical and nonlinear optical properties of [1,2,5]oxadiazolo[3,4-b]pyrazine-based linear push-pull systems. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 404, 112900.	3.9	20
3	Photothermal Plasmonic Actuation of Micromechanical Cantilever Beams. Physical Review Applied, 2021, 15, .	3.8	2
4	Styryl-based new organic chromophores bearing free amino and azomethine groups: synthesis, photophysical, NLO, and thermal properties. Beilstein Journal of Organic Chemistry, 2020, 16, 2282-2296.	2.2	4
5	Electronâ€Withdrawing Substituted Quinazoline Pushâ€Pull Chromophores: Synthesis, Electrochemical, Photophysical and Secondâ€Order Nonlinear Optical Properties. European Journal of Organic Chemistry, 2020, 2020, 5445-5454.	2.4	13
6	Indole based push-pull dyes bearing azo and dimethine: Synthesis, spectroscopic, NLO, anion affinity properties and thermal characterization. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 402, 112818.	3.9	13
7	Photonic Excitation of a Micromechanical Cantilever in Electrostatic Fields. Physical Review Letters, 2020, 125, 254301.	7.8	6
8	Pushâ€"pull Dâ€"Ï€-Ruâ€"Ï€-A chromophores: synthesis and electrochemical, photophysical and second-order nonlinear optical properties. Dalton Transactions, 2018, 47, 3965-3975.	3.3	41
9	Incorporation of a ferrocene unit in the π-conjugated structure of donor-linker-acceptor (D-π-A) chromophores for nonlinear optics (NLO). Dyes and Pigments, 2018, 155, 68-74.	3.7	47
10	Triphenylamine-based allylidenemalononitrile chromophores: synthesis, and photophysical and second-order nonlinear optical properties. New Journal of Chemistry, 2018, 42, 15052-15060.	2.8	22
11	Incorporation of a platinum center in the pi-conjugated core of push–pull chromophores for nonlinear optics (NLO). Dalton Transactions, 2017, 46, 3059-3069.	3.3	39
12	Dipolar NLO Chromophores Bearing Diazine Rings as π-Conjugated Linkers. Journal of Organic Chemistry, 2017, 82, 9435-9451.	3.2	76
13	Proaromatic pyranylidene chalcogen analogues and cyclopenta[c]thiophen-4,6-dione as electron donors and acceptor in efficient charge-transfer chromophores. Dyes and Pigments, 2016, 134, 129-138.	3.7	26
14	Styryl-based NLO chromophores: synthesis, spectroscopic properties, and theoretical calculations. Tetrahedron Letters, 2015, 56, 2586-2589.	1.4	27
15	Donor–linker–acceptor (D–π–A) diazine chromophores with extended π-conjugated cores: synthesis, photophysical and second order nonlinear optical properties. RSC Advances, 2015, 5, 39218-39227.	3.6	46
16	Improvement of the quadratic non-linear optical properties of pyrimidine chromophores by N-methylation and tungsten pentacarbonyl complexation. Dyes and Pigments, 2015, 113, 562-570.	3.7	35
17	BODIPYâ€Bridged Push–Pull Chromophores for Nonlinear Optical Applications. ChemPhysChem, 2014, 15, 2693-2700.	2.1	71
18	Synthesis, Photophysics and Nonlinear Optical Properties of Stilbenoid Pyrimidineâ€Based Dyes Bearing Methylenepyran Donor Groups. ChemPhysChem, 2013, 14, 2725-2736.	2.1	46

Alberto Barsella

#	Article	IF	CITATIONS
19	Methylenepyran based dipolar and quadrupolar dyes: synthesis, electrochemical and photochemical properties. Tetrahedron, 2013, 69, 8392-8399.	1.9	39
20	Thiazole azo dyes with lateral donor branch: Synthesis, structure and second order NLO properties. Dyes and Pigments, 2013, 96, 45-51.	3.7	82
21	Synthesis and Photophysical Investigation of a Series of Push–Pull Arylvinyldiazine Chromophores. Journal of Organic Chemistry, 2012, 77, 4087-4096.	3.2	137