Israel Ausin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4170682/publications.pdf Version: 2024-02-01

ISDAFI ALISIN

#	Article	IF	CITATIONS
1	NAP1-RELATED PROTEIN1 and 2 negatively regulate H2A.Z abundance in chromatin in Arabidopsis. Nature Communications, 2020, 11, 2887.	5.8	25
2	Arabidopsis SWR1-associated protein methyl-CpG-binding domain 9 is required for histone H2A.Z deposition. Nature Communications, 2019, 10, 3352.	5.8	60
3	Genetic Interactions and Molecular Evolution of the Duplicated Genes <i>ICARUS2</i> and <i>ICARUS1</i> Help Arabidopsis Plants Adapt to Different Ambient Temperatures. Plant Cell, 2019, 31, 1222-1237.	3.1	3
4	Large-scale comparative epigenomics reveals hierarchical regulation of non-CG methylation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1069-E1074.	3.3	51
5	Environmental and genetic interactions reveal <i>FLOWERING LOCUSC</i> as a modulator of the natural variation for the plasticity of flowering in Arabidopsis. Plant, Cell and Environment, 2016, 39, 282-294.	2.8	29
6	DNA methylome of the 20-gigabase Norway spruce genome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8106-E8113.	3.3	85
7	<scp>FE</scp> , a phloemâ€specific Mybâ€related protein, promotes flowering through transcriptional activation of <i><scp>FLOWERING LOCUS</scp> T</i> and <i><scp>FLOWERING LOCUS</scp> T <scp>INTERACTING PROTEIN</scp> 1</i> . Plant Journal, 2015, 83, 1059-1068.	2.8	53
8	DOMAINS REARRANGED METHYLTRANSFERASE3 controls DNA methylation and regulates RNA polymerase V transcript abundance in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 911-916.	3.3	192
9	Natural Variation Identifies ICARUS1, a Universal Gene Required for Cell Proliferation and Growth at High Temperatures in Arabidopsis thaliana. PLoS Genetics, 2015, 11, e1005085.	1.5	34
10	CG gene body DNA methylation changes and evolution of duplicated genes in cassava. Proceedings of the United States of America, 2015, 112, 13729-13734.	3.3	129
11	A One Precursor One siRNA Model for Pol IV-Dependent siRNA Biogenesis. Cell, 2015, 163, 445-455.	13.5	260
12	SNF2 chromatin remodeler-family proteins FRG1 and -2 are required for RNA-directed DNA methylation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17666-17671.	3.3	27
13	The <scp>TRANSPLANTA</scp> collection of <scp>A</scp> rabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. Plant Journal, 2014, 77, 944-953.	2.8	104
14	The splicing factor SR45 affects the RNA-directed DNA methylation pathway in Arabidopsis. Epigenetics, 2012, 7, 29-33.	1.3	68
15	INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8374-8381.	3.3	85
16	Identification of genes required for de novo DNA methylation in Arabidopsis. Epigenetics, 2011, 6, 344-354.	1.3	64
17	A Protein Complex Required for Polymerase V Transcripts and RNA- Directed DNA Methylation in Arabidopsis. Current Biology, 2010, 20, 951-956.	1.8	195
18	Involvement of a Jumonji domainâ€containing histone demethylase in DRM2â€mediated maintenance of DNA methylation. EMBO Reports, 2010, 11, 950-955.	2.0	78

#	Article	IF	CITATIONS
19	IDN1 and IDN2 are required for de novo DNA methylation in Arabidopsis thaliana. Nature Structural and Molecular Biology, 2009, 16, 1325-1327.	3.6	98
20	Environmental regulation of flowering. International Journal of Developmental Biology, 2005, 49, 689-705.	0.3	149
21	Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nature Genetics, 2004, 36, 162-166.	9.4	347