Gabriel J Starrett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/417045/publications.pdf

Version: 2024-02-01

39 papers

3,112 citations

257450 24 h-index 330143 37 g-index

48 all docs

48 docs citations

48 times ranked 5297 citing authors

#	Article	IF	CITATIONS
1	Long-read sequencing reveals complex patterns of wraparound transcription in polyomaviruses. PLoS Pathogens, 2022, 18, e1010401.	4.7	8
2	Reversal of viral and epigenetic HLA class I repression in Merkel cell carcinoma. Journal of Clinical Investigation, 2022, 132 , .	8.2	10
3	Adintoviruses: a proposed animal-tropic family of midsize eukaryotic linear dsDNA (MELD) viruses. Virus Evolution, 2021, 7, veaa055.	4.9	28
4	Sebaceous Carcinoma Epidemiology and Genetics: Emerging Concepts and Clinical Implications for Screening, Prevention, and Treatment. Clinical Cancer Research, 2021, 27, 389-393.	7.0	19
5	Host-Pathogen Interactions in Human Polyomavirus 7‒Associated Pruritic Skin Eruption. Journal of Investigative Dermatology, 2021, 141, 1344-1348.e8.	0.7	7
6	Treatment of Relapsing HPV Diseases by Restored Function of Natural Killer Cells. New England Journal of Medicine, 2021, 385, 921-929.	27.0	22
7	Metagenomic analysis to identify novel infectious agents in systemic anaplastic large cell lymphoma. Infectious Agents and Cancer, 2021, 16, 65.	2.6	O
8	APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. Journal of Experimental Medicine, 2020, 217, .	8.5	87
9	Clinical and molecular characterization of virus-positive and virus-negative Merkel cell carcinoma. Genome Medicine, 2020, 12, 30.	8.2	71
10	ViroPanel. Journal of Molecular Diagnostics, 2020, 22, 476-487.	2.8	6
11	Predictors of immunotherapy benefit in Merkel cell carcinoma. Oncotarget, 2020, 11, 4401-4410.	1.8	5
12	Discovery of several thousand highly diverse circular DNA viruses. ELife, 2020, 9, .	6.0	131
13	The case for BK polyomavirus as a cause of bladder cancer. Current Opinion in Virology, 2019, 39, 8-15.	5.4	27
14	Mash Screen: high-throughput sequence containment estimation for genome discovery. Genome Biology, 2019, 20, 232.	8.8	173
15	The deaminase APOBEC3B triggers the death of cells lacking uracil DNA glycosylase. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22158-22163.	7.1	34
16	Polyomavirus T Antigen Induces <i>APOBEC3B</i> Expression Using an LXCXE-Dependent and TP53-Independent Mechanism. MBio, 2019, 10, .	4.1	35
17	Metagenomic Discovery of 83 New Human Papillomavirus Types in Patients with Immunodeficiency. MSphere, 2018, 3, .	2.9	7 5
18	Genetic and mechanistic basis for APOBEC3H alternative splicing, retrovirus restriction, and counteraction by HIV-1 protease. Nature Communications, 2018, 9, 4137.	12.8	28

#	Article	IF	Citations
19	Characterization of BK Polyomaviruses from Kidney Transplant Recipients Suggests a Role for APOBEC3 in Driving In-Host Virus Evolution. Cell Host and Microbe, 2018, 23, 628-635.e7.	11.0	63
20	Merkel Cell Polyomavirus Exhibits Dominant Control of the Tumor Genome and Transcriptome in Virus-Associated Merkel Cell Carcinoma. MBio, 2017, 8, .	4.1	100
21	Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nature Structural and Molecular Biology, 2017, 24, 131-139.	8.2	214
22	APOBEC3B lysine residues are dispensable for DNA cytosine deamination, HIV-1 restriction, and nuclear localization. Virology, 2017, 511, 74-81.	2.4	3
23	Lineage-Specific Effector Signatures of Invariant NKT Cells Are Shared amongst γδT, Innate Lymphoid, and Th Cells. Journal of Immunology, 2016, 197, 1460-1470.	0.8	114
24	Functional Upregulation of the DNA Cytosine Deaminase APOBEC3B by Polyomaviruses. Journal of Virology, 2016, 90, 6379-6386.	3.4	80
25	The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis. Nature Communications, 2016, 7, 12918.	12.8	146
26	The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer. Science Advances, 2016, 2, e1601737.	10.3	175
27	APOBEC3G Expression Correlates with T-Cell Infiltration and Improved Clinical Outcomes in High-grade Serous Ovarian Carcinoma. Clinical Cancer Research, 2016, 22, 4746-4755.	7.0	59
28	Mutation Processes in 293-Based Clones Overexpressing the DNA Cytosine Deaminase APOBEC3B. PLoS ONE, 2016, 11, e0155391.	2.5	33
29	APOBEC Enzymes: Mutagenic Fuel for Cancer Evolution and Heterogeneity. Cancer Discovery, 2015, 5, 704-712.	9.4	392
30	The PKC/NF-κB Signaling Pathway Induces APOBEC3B Expression in Multiple Human Cancers. Cancer Research, 2015, 75, 4538-4547.	0.9	116
31	Tissue-Specific Distribution of iNKT Cells Impacts Their Cytokine Response. Immunity, 2015, 43, 566-578.	14.3	244
32	Whole genome sequencing of SIV-infected macaques identifies candidate loci that may contribute to host control of virus replication. Genome Biology, 2014, 15, 478.	8.8	30
33	Human Papillomavirus E6 Triggers Upregulation of the Antiviral and Cancer Genomic DNA Deaminase APOBEC3B. MBio, 2014, 5, .	4.1	172
34	Selection on haemagglutinin imposes a bottleneck during mammalian transmission of reassortant H5N1 influenza viruses. Nature Communications, 2013, 4, 2636.	12.8	80
35	Haplessly Hoping: Macaque Major Histocompatibility Complex Made Easy. ILAR Journal, 2013, 54, 196-210.	1.8	98
36	Complete Genome of <i>Serratia</i> sp. Strain FGI 94, a Strain Associated with Leaf-Cutter Ant Fungus Gardens. Genome Announcements, 2013, 1, e0023912.	0.8	15

#	Article	IF	CITATIONS
37	Major Histocompatibility Complex Class I Haplotype Diversity in Chinese Rhesus Macaques. G3: Genes, Genomes, Genetics, 2013, 3, 1195-1201.	1.8	44
38	Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens. ISME Journal, 2012, 6, 1688-1701.	9.8	126
39	APOBEC3B Signature Mutations Benefit BK Polyomavirus. SSRN Electronic Journal, 0, , .	0.4	0