
## Lilin Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4170153/publications.pdf Version: 2024-02-01



Ιπη Ζηνο

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Interspecific communication between pinewood nematode, its insect vector, and associated microbes.<br>Trends in Parasitology, 2014, 30, 299-308.                                                                                   | 3.3  | 113       |
| 2  | Chemical Signals Synchronize the Life Cycles of a Plant-Parasitic Nematode and Its Vector Beetle.<br>Current Biology, 2013, 23, 2038-2043.                                                                                         | 3.9  | 69        |
| 3  | Ascarosides coordinate the dispersal of a plant-parasitic nematode with the metamorphosis of its vector beetle. Nature Communications, 2016, 7, 12341.                                                                             | 12.8 | 69        |
| 4  | The Ratio and Concentration of Two Monoterpenes Mediate Fecundity of the Pinewood Nematode and Growth of Its Associated Fungi. PLoS ONE, 2012, 7, e31716.                                                                          | 2.5  | 42        |
| 5  | A native fungal symbiont facilitates the prevalence and development of an invasive pathogen–native vector symbiosis. Ecology, 2013, 94, 2817-2826.                                                                                 | 3.2  | 41        |
| 6  | miR-31-5p regulates cold acclimation of the wood-boring beetle Monochamus alternatus via ascaroside signaling. BMC Biology, 2020, 18, 184.                                                                                         | 3.8  | 30        |
| 7  | CO2 drives the pine wood nematode off its insect vector. Current Biology, 2019, 29, R619-R620.                                                                                                                                     | 3.9  | 27        |
| 8  | Enhancement of oxidative stress contributes to increased pathogenicity of the invasive pine wood nematode. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180323.                            | 4.0  | 24        |
| 9  | Gene family expansion of pinewood nematode to detoxify its host defence chemicals. Molecular<br>Ecology, 2020, 29, 940-955.                                                                                                        | 3.9  | 23        |
| 10 | Ascarosides Promote the Prevalence of Ophiostomatoid Fungi and an Invasive Pathogenic Nematode,<br>Bursaphelenchus xylophilus. Journal of Chemical Ecology, 2018, 44, 701-710.                                                     | 1.8  | 16        |
| 11 | Phenotypic plasticity of reproductive traits in response to food availability in invasive and native species of nematode. Biological Invasions, 2013, 15, 1407-1415.                                                               | 2.4  | 14        |
| 12 | Chemical Signals of Vector Beetle Facilitate the Prevalence of a Native Fungus and the Invasive Pinewood Nematode. Journal of Nematology, 2017, 49, 341-347.                                                                       | 0.9  | 13        |
| 13 | Differential immune responses of Monochamus alternatus against symbiotic and entomopathogenic<br>fungi. Science China Life Sciences, 2017, 60, 902-910.                                                                            | 4.9  | 12        |
| 14 | A novel rapid sampling method for pinewood nematode, <i>Bursaphelenchus xylophilus</i><br>(Nematoda: Parasitaphelenchidae). Canadian Journal of Forest Research, 2007, 37, 1867-1872.                                              | 1.7  | 11        |
| 15 | Pinewood Nematode Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle. , 2017, , 3-21.                                                                                                                                          |      | 10        |
| 16 | A Reference Genome of Bursaphelenchus mucronatus Provides New Resources for Revealing Its<br>Displacement by Pinewood Nematode. Genes, 2020, 11, 570.                                                                              | 2.4  | 10        |
| 17 | Invasion History of the Pinewood Nematode Bursaphelenchus xylophilus Influences the Abundance of<br>Serratia sp. in Pupal Chambers and Tracheae of Insect-Vector Monochamus alternatus. Frontiers in<br>Plant Science, 2022, 13, . | 3.6  | 9         |
| 18 | Species displacement facilitated by ascarosides between two sympatric sibling species: a native and<br>invasive nematode. Journal of Pest Science, 2020, 93, 1059-1071.                                                            | 3.7  | 8         |

Lilin Zhao

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Major ascaroside pheromone component asc 5 influences reproductive plasticity among isolates of the invasive species pinewood nematode. Integrative Zoology, 2020, 16, 893-907.                                                                | 2.6 | 7         |
| 20 | A new bacteriaâ€free strategy induced by MaGal2 facilitates pinewood nematode escape immune response<br>from its vector beetle. Insect Science, 2021, 28, 1087-1102.                                                                           | 3.0 | 4         |
| 21 | Parallel Evolution of C-Type Lectin Domain Gene Family Sizes in Insect-Vectored Nematodes. Frontiers in Plant Science, 2022, 13, 856826.                                                                                                       | 3.6 | 2         |
| 22 | Developmental differences between a Chinese and a North American isolate of the pinewood nematode<br>Bursaphelenchus xylophilus (Tylenchida: Aphelenchoididae) under laboratory conditions. Science<br>China Life Sciences, 2017, 60, 921-923. | 4.9 | 1         |
| 23 | Chemical Signals of Vector Beetle Facilitate the Prevalence of a Native Fungus and the Invasive Pinewood Nematode. Journal of Nematology, 2017, 49, 341-347.                                                                                   | 0.9 | 1         |
| 24 | Microhabitat Governs the Microbiota of the Pinewood Nematode and Its Vector Beetle: Implication for the Prevalence of Pine Wilt Disease. Microbiology Spectrum, 2022, 10, .                                                                    | 3.0 | 1         |
| 25 | American fall webworm in China: A new case of global biological invasions. Innovation(China), 2022, 3, 100201.                                                                                                                                 | 9.1 | Ο         |