Valeria Castelletto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4169621/publications.pdf Version: 2024-02-01

		61984	106344
124	5,195	43	65
papers	citations	h-index	g-index
131 all docs	131 docs citations	131 times ranked	5125 citing authors

#	Article	IF	CITATIONS
1	Amyloid and Hydrogel Formation of a Peptide Sequence from a Coronavirus Spike Protein. ACS Nano, 2022, 16, 1857-1867.	14.6	22
2	Nanostructure Formation and Cell Spheroid Morphogenesis of a Peptide Supramolecular Hydrogel. Langmuir, 2022, 38, 3434-3445.	3.5	9
3	Self-Assembly of Angiotensin-Converting Enzyme Inhibitors Captopril and Lisinopril and Their Crystal Structures. Langmuir, 2021, 37, 9170-9178.	3.5	2
4	Alpha helical surfactant-like peptides self-assemble into pH-dependent nanostructures. Soft Matter, 2021, 17, 3096-3104.	2.7	13
5	Model self-assembling arginine-based tripeptides show selective activity against <i>Pseudomonas</i> bacteria. Chemical Communications, 2020, 56, 615-618.	4.1	14
6	Peptide-Based Gel in Environmental Remediation: Removal of Toxic Organic Dyes and Hazardous Pb ²⁺ and Cd ²⁺ Ions from Wastewater and Oil Spill Recovery. Langmuir, 2020, 36, 12942-12953.	3.5	56
7	Peptide nanotubes self-assembled from leucine-rich alpha helical surfactant-like peptides. Chemical Communications, 2020, 56, 11977-11980.	4.1	10
8	Chain-End Modifications and Sequence Arrangements of Antimicrobial Peptoids for Mediating Activity and Nano-Assembly. Frontiers in Chemistry, 2020, 8, 416.	3.6	17
9	Amyloid Peptide Mixtures: Self-Assembly, Hydrogelation, Nematic Ordering, and Catalysts in Aldol Reactions. Langmuir, 2020, 36, 2767-2774.	3.5	19
10	Self-Assembly of Minimal Peptoid Sequences. ACS Macro Letters, 2020, 9, 494-499.	4.8	21
11	Self-Assembly, Nematic Phase Formation, and Organocatalytic Behavior of a Proline-Functionalized Lipopeptide. ACS Applied Materials & Interfaces, 2020, 12, 13671-13679.	8.0	14
12	Selective Antibacterial Activity and Lipid Membrane Interactions of Arginine-Rich Amphiphilic Peptides. ACS Applied Bio Materials, 2020, 3, 1165-1175.	4.6	40
13	Magnetic Field-Induced Alignment of Nanofibrous Supramolecular Membranes: A Molecular Design Approach to Create Tissue-like Biomaterials. ACS Applied Materials & Interfaces, 2020, 12, 22661-22672.	8.0	21
14	Self-assembly and intracellular delivery of DNA by a truncated fragment derived from the <i>Trojan</i> peptide <i>Penetratin</i> . Soft Matter, 2020, 16, 4746-4755.	2.7	17
15	Restructuring of Lipid Membranes by an Arginine-Capped Peptide Bolaamphiphile. Langmuir, 2019, 35, 1302-1311.	3.5	20
16	Self-Assembly, Tunable Hydrogel Properties, and Selective Anti-Cancer Activity of a Carnosine-Derived Lipidated Peptide. ACS Applied Materials & Interfaces, 2019, 11, 33573-33580.	8.0	42
17	Unravelling the role of amino acid sequence order in the assembly and function of the amyloid-β core. Chemical Communications, 2019, 55, 8595-8598.	4.1	14
18	Self-Assembly of a Catalytically Active Lipopeptide and Its Incorporation into Cubosomes. ACS Applied Bio Materials, 2019, 2, 3639-3647.	4.6	15

#	Article	IF	CITATIONS
19	Nanoscopic Structure of Complexes Formed between DNA and the Cell-Penetrating Peptide Penetratin. Journal of Physical Chemistry B, 2019, 123, 8861-8871.	2.6	18
20	Self-Assembly, Antimicrobial Activity, and Membrane Interactions of Arginine-Capped Peptide Bola-Amphiphiles. ACS Applied Bio Materials, 2019, 2, 2208-2218.	4.6	30
21	Crystallization and lamellar nanosheet formation of an aromatic dipeptoid. Chemical Communications, 2019, 55, 5867-5869.	4.1	17
22	Melanin production by tyrosinase activity on a tyrosine-rich peptide fragment and pH-dependent self-assembly of its lipidated analogue. Organic and Biomolecular Chemistry, 2019, 17, 4543-4553.	2.8	12
23	Peptide-Stabilized Emulsions and Gels from an Arginine-Rich Surfactant-like Peptide with Antimicrobial Activity. ACS Applied Materials & Interfaces, 2019, 11, 9893-9903.	8.0	56
24	The Conformation and Aggregation of Proline-Rich Surfactant-Like Peptides. Journal of Physical Chemistry B, 2018, 122, 1826-1835.	2.6	14
25	Amino-Acid-Based Metallo-Hydrogel That Acts Like an Esterase. ACS Applied Bio Materials, 2018, 1, 1717-1724.	4.6	35
26	Conformation and Aggregation of Selectively PEGylated and Lipidated Gastric Peptide Hormone Human PYY _{3–36} . Biomacromolecules, 2018, 19, 4320-4332.	5.4	17
27	Methods to Characterize the Nanostructure and Molecular Organization of Amphiphilic Peptide Assemblies. Methods in Molecular Biology, 2018, 1777, 3-21.	0.9	10
28	Supramolecular Threading of Peptide Hydrogel Fibrils. ACS Biomaterials Science and Engineering, 2018, 4, 2733-2738.	5.2	12
29	High potency of lipid conjugated TLR7 agonist requires nanoparticulate or liposomal formulation. European Journal of Pharmaceutical Sciences, 2018, 123, 268-276.	4.0	9
30	Arginine-Containing Surfactant-Like Peptides: Interaction with Lipid Membranes and Antimicrobial Activity. Biomacromolecules, 2018, 19, 2782-2794.	5.4	54
31	Self-Assembly of Peptide Bioconjugates: Selected Recent Research Highlights. Bioconjugate Chemistry, 2017, 28, 731-739.	3.6	43
32	Self-assembly of ultra-small micelles from amphiphilic lipopeptoids. Chemical Communications, 2017, 53, 2178-2181.	4.1	33
33	Shear Alignment of Bola-Amphiphilic Arginine-Coated Peptide Nanotubes. Biomacromolecules, 2017, 18, 141-149.	5.4	42
34	Halogenation dictates the architecture of amyloid peptide nanostructures. Nanoscale, 2017, 9, 9805-9810.	5.6	33
35	Supramolecular Hydrogel Formation in a Series of Self-Assembling Lipopeptides with Varying Lipid Chain Length. Biomacromolecules, 2017, 18, 2013-2023.	5.4	28
36	Self-Assembly and Anti-Amyloid Cytotoxicity Activity of Amyloid beta Peptide Derivatives. Scientific Reports, 2017, 7, 43637.	3.3	47

#	Article	IF	CITATIONS
37	Hybrid membrane biomaterials from self-assembly in polysaccharide and peptide amphiphile mixtures: controllable structural and mechanical properties and antimicrobial activity. RSC Advances, 2017, 7, 8366-8375.	3.6	24
38	Supramolecular Peptide Nanofiber Morphology Affects Mechanotransduction of Stem Cells. Biomacromolecules, 2017, 18, 3114-3130.	5.4	18
39	Thermally Regulated Reversible Formation of Vesicle-Like Assemblies by Hexaproline Amphiphiles. Journal of Physical Chemistry B, 2017, 121, 7443-7446.	2.6	7
40	Hierarchical Self-Assembly of Histidine-Functionalized Peptide Amphiphiles into Supramolecular Chiral Nanostructures. Langmuir, 2017, 33, 7947-7956.	3.5	32
41	Selfâ€Assembly of the Cyclic Lipopeptide Daptomycin: Spherical Micelle Formation Does Not Depend on the Presence of Calcium Chloride. ChemPhysChem, 2016, 17, 2118-2122.	2.1	32
42	A De Novo Virus-Like Topology for Synthetic Virions. Journal of the American Chemical Society, 2016, 138, 12202-12210.	13.7	59
43	Nanosheet Formation by an Anionic Surfactant-like Peptide and Modulation of Self-Assembly through Ionic Complexation. Langmuir, 2016, 32, 10387-10393.	3.5	23
44	Self-Assembly of the Toll-Like Receptor Agonist Macrophage-Activating Lipopeptide MALP-2 and of Its Constituent Peptide. Biomacromolecules, 2016, 17, 631-640.	5.4	23
45	Self-Assembly of Telechelic Tyrosine End-Capped PEO and Poly(alanine) Polymers in Aqueous Solution. Biomacromolecules, 2016, 17, 1186-1197.	5.4	10
46	A peptide hydrogel derived from a fragment of human cardiac troponin C. Chemical Communications, 2016, 52, 4056-4059.	4.1	14
47	Peptide based hydrogels for cancer drug release: modulation of stiffness, drug release and proteolytic stability of hydrogels by incorporating <scp>d</scp> -amino acid residue(s). Chemical Communications, 2016, 52, 5045-5048.	4.1	106
48	Self-assembly pathway of peptide nanotubes formed by a glutamatic acid-based bolaamphiphile. Chemical Communications, 2015, 51, 11634-11637.	4.1	44
49	New Self-Assembling Multifunctional Templates for the Biofabrication and Controlled Self-Release of Cultured Tissue. Tissue Engineering - Part A, 2015, 21, 1772-1784.	3.1	39
50	Self-Assembly and Collagen-Stimulating Activity of a Peptide Amphiphile Incorporating a Peptide Sequence from Lumican. Langmuir, 2015, 31, 4490-4495.	3.5	33
51	Self-Assembly of a Designed Alternating Arginine/Phenylalanine Oligopeptide. Langmuir, 2015, 31, 4513-4523.	3.5	46
52	Self-assembly of the anti-fungal polyene amphotericin B into giant helically-twisted nanotapes. Chemical Communications, 2015, 51, 17680-17683.	4.1	2
53	Self-Assembled Arginine-Capped Peptide Bolaamphiphile Nanosheets for Cell Culture and Controlled Wettability Surfaces. Biomacromolecules, 2015, 16, 3180-3190.	5.4	49
54	Interactions between lipid-free apolipoprotein-AI and a lipopeptide incorporating the RGDS cell adhesion motif. Nanoscale, 2015, 7, 171-178.	5.6	2

#	Article	IF	CITATIONS
55	Toll-like receptor agonist lipopeptides self-assemble into distinct nanostructures. Chemical Communications, 2014, 50, 15948-15951.	4.1	55
56	Selfâ€assembling amphiphilic peptides. Journal of Peptide Science, 2014, 20, 453-467.	1.4	306
57	Self-Assembly of a Model Peptide Incorporating a Hexa-Histidine Sequence Attached to an Oligo-Alanine Sequence, and Binding to Gold NTA/Nickel Nanoparticles. Biomacromolecules, 2014, 15, 3412-3420.	5.4	24
58	Tuning Chelation by the Surfactant-Like Peptide A ₆ H Using Predetermined pH Values. Biomacromolecules, 2014, 15, 591-598.	5.4	23
59	Alanine-rich amphiphilic peptide containing the RGD cell adhesion motif: a coating material for human fibroblast attachment and culture. Biomaterials Science, 2014, 2, 362-369.	5.4	40
60	Influence of elastase on alanine-rich peptide hydrogels. Biomaterials Science, 2014, 2, 867-874.	5.4	20
61	The effect of pH on the self-assembly of a collagen derived peptide amphiphile. Soft Matter, 2013, 9, 6033.	2.7	57
62	Collagen Stimulating Effect of Peptide Amphiphile C ₁₆ –KTTKS on Human Fibroblasts. Molecular Pharmaceutics, 2013, 10, 1063-1069.	4.6	58
63	Bioactive films produced from self-assembling peptide amphiphiles as versatile substrates for tuning cell adhesion and tissue architecture in serum-free conditions. Journal of Materials Chemistry B, 2013, 1, 6157.	5.8	40
64	Interaction between a Cationic Surfactant-like Peptide and Lipid Vesicles and Its Relationship to Antimicrobial Activity. Langmuir, 2013, 29, 14246-14253.	3.5	54
65	Self-assembly of a model amphiphilic oligopeptide incorporating an arginine headgroup. Soft Matter, 2013, 9, 4794.	2.7	43
66	Self-assembly and bioactivity of a polymer/peptide conjugate containing the RGD cell adhesion motif and PEG. European Polymer Journal, 2013, 49, 2961-2967.	5.4	22
67	Self-assembly of a peptide amphiphile: transition from nanotape fibrils to micelles. Soft Matter, 2013, 9, 3558.	2.7	78
68	New RGD-peptide amphiphile mixtures containing a negatively charged diluent. Faraday Discussions, 2013, 166, 381.	3.2	51
69	Reversible helical unwinding transition of a self-assembling peptide amphiphile. Soft Matter, 2013, 9, 9290.	2.7	77
70	Self-assembled arginine-coated peptide nanosheets in water. Chemical Communications, 2013, 49, 1850.	4.1	92
71	Coassembly in Binary Mixtures of Peptide Amphiphiles Containing Oppositely Charged Residues. Langmuir, 2013, 29, 5050-5059.	3.5	56
72	Self-Assembly of Palmitoyl Lipopeptides Used in Skin Care Products. Langmuir, 2013, 29, 9149-9155.	3.5	31

#	Article	IF	CITATIONS
73	Insights into the Molecular Architecture of a Peptide Nanotube Using FTIR and Solid‣tate NMR Spectroscopic Measurements on an Aligned Sample. Angewandte Chemie - International Edition, 2013, 52, 10537-10540.	13.8	59
74	Slow-Release RGD-Peptide Hydrogel Monoliths. Langmuir, 2012, 28, 12575-12580.	3.5	25
75	Self-Assembly of a Peptide Amphiphile Containing <scp>l</scp> -Carnosine and Its Mixtures with a Multilamellar Vesicle Forming Lipid. Langmuir, 2012, 28, 11599-11608.	3.5	61
76	Influence of a non-ionic amphiphilic copolymer on the self-assembly of a peptide amphiphile that forms nanotapes. Soft Matter, 2012, 8, 8608.	2.7	12
77	Modulating self-assembly of a nanotape-forming peptideamphiphile with an oppositely charged surfactant. Soft Matter, 2012, 8, 217-226.	2.7	52
78	Control of strand registry by attachment of PEG chains to amyloid peptides influences nanostructure. Soft Matter, 2012, 8, 5434.	2.7	21
79	Biomimetic triblock copolymer membranes: from aqueous solutions to solid supports. Soft Matter, 2011, 7, 1129-1138.	2.7	18
80	Photopolymerization of Pluronic F127 diacrylate: a colloid-templated polymerization. Soft Matter, 2011, 7, 4928.	2.7	40
81	Self-assembly of Fmoc-tetrapeptides based on the RGDS cell adhesion motif. Soft Matter, 2011, 7, 11405.	2.7	56
82	Tuning the Self-Assembly of the Bioactive Dipeptide <scp>l</scp> -Carnosine by Incorporation of a Bulky Aromatic Substituent. Langmuir, 2011, 27, 2980-2988.	3.5	67
83	Hydrogelation of self-assembling RGD-based peptides. Soft Matter, 2011, 7, 1326-1333.	2.7	112
84	Multiple hydrogen bonds induce formation of nanoparticles with internal microemulsion structure by an amphiphilic copolymer. Soft Matter, 2011, 7, 10116.	2.7	16
85	Influence of End-Capping on the Self-Assembly of Model Amyloid Peptide Fragments. Journal of Physical Chemistry B, 2011, 115, 2107-2116.	2.6	52
86	Amyloid peptides incorporating a core sequence from the amyloid beta peptide and gamma amino acids: relating bioactivity to self-assembly. Chemical Communications, 2011, 47, 12470.	4.1	24
87	Selfâ€Assembly of a Modified Amyloid Peptide Fragment: pHâ€Responsiveness and Nematic Phase Formation. Macromolecular Bioscience, 2010, 10, 40-48.	4.1	40
88	A βâ€amino acid modified heptapeptide containing a designed recognition element disrupts fibrillization of the amyloid βâ€peptide. Journal of Peptide Science, 2010, 16, 443-450.	1.4	4
89	Self-assembly of an amyloid peptide fragment–PEG conjugate: lyotropic phase formation and influence of PEG crystallization. Polymer Chemistry, 2010, 1, 453-459.	3.9	16
90	PEGylated Amyloid Peptide Nanocontainer Delivery and Release System. Langmuir, 2010, 26, 11624-11627.	3.5	57

#	Article	IF	CITATIONS
91	Self-Assembly of PEGylated Peptide Conjugates Containing a Modified Amyloid β-Peptide Fragment. Langmuir, 2010, 26, 9986-9996.	3.5	53
92	Influence of Salt on the Self-Assembly of Two Model Amyloid Heptapeptides. Journal of Physical Chemistry B, 2010, 114, 8002-8008.	2.6	53
93	Alignment of a Model Amyloid Peptide Fragment in Bulk and at a Solid Surface. Journal of Physical Chemistry B, 2010, 114, 8244-8254.	2.6	33
94	Dynamics of shear-induced orientation transitions in block copolymers. Soft Matter, 2010, 6, 1941.	2.7	10
95	Fibrillar superstructure from extended nanotapes formed by a collagen-stimulating peptide. Chemical Communications, 2010, 46, 9185.	4.1	66
96	Structure of single-wall peptide nanotubes: in situ flow aligning X-ray diffraction. Chemical Communications, 2010, 46, 6270.	4.1	62
97	Helicalâ€Ribbon Formation by a βâ€Amino Acid Modified Amyloid βâ€Peptide Fragment. Angewandte Chemie - International Edition, 2009, 48, 2317-2320.	13.8	85
98	Self assembly of a model amphiphilic phenylalanine peptide/polyethylene glycol block copolymer in aqueous solution. Biophysical Chemistry, 2009, 141, 169-174.	2.8	105
99	Effect of Stretching on the Structure of Cylinder- and Sphere-Forming Styreneâ^'Isopreneâ^'Styrene Block Copolymers. Macromolecules, 2009, 42, 5256-5265.	4.8	39
100	Influence of the Solvent on the Self-Assembly of a Modified Amyloid Beta Peptide Fragment. I. Morphological Investigation. Journal of Physical Chemistry B, 2009, 113, 9978-9987.	2.6	90
101	Effect of Sequence Distribution on the Morphology, Crystallization, Melting, and Biodegradation of Poly(Îμ-caprolactone- <i>co</i> -Îμ-caprolactam) Copolymers. Macromolecules, 2009, 42, 6671-6681.	4.8	46
102	A SAXS study of flow alignment of thermotropic liquid crystal mixtures. Liquid Crystals, 2009, 36, 435-442.	2.2	10
103	Self-assembly in aqueous solution of a modified amyloid beta peptide fragment. Biophysical Chemistry, 2008, 138, 29-35.	2.8	49
104	Interactions of KLVFFâ€PEG Peptide Conjugate with Fibrinogen in Neutral Aqueous Solutions. Macromolecular Bioscience, 2008, 8, 1182-1189.	4.1	5
105	Nematic and Columnar Ordering of a PEG-Peptide Conjugate in Aqueous Solution. Chemistry - A European Journal, 2008, 14, 11268-11268.	3.3	1
106	Multiple Lyotropic Polymorphism of a Poly(ethylene glycol)â€Peptide Conjugate in Aqueous Solution. Advanced Materials, 2008, 20, 4394-4397.	21.0	52
107	Osmotic pressure and aggregate shape in BSA/poly(ethylene glycol)-lipid/Dextran solutions. Biophysical Chemistry, 2008, 134, 34-38.	2.8	1
108	Self-Assembly and Hydrogelation of an Amyloid Peptide Fragment. Biochemistry, 2008, 47, 4597-4605.	2.5	265

#	Article	IF	CITATIONS
109	Self-Assembly of Peptide Nanotubes in an Organic Solvent. Langmuir, 2008, 24, 8158-8162.	3.5	124
110	Pressure Effects Revealed by Small Angle Neutron Scattering on Block Copolymer Gels. Langmuir, 2008, 24, 8319-8324.	3.5	2
111	Fractionated Crystallization and Fractionated Melting of Confined PEO Microdomains in PB- <i>b</i> -PEO and PE- <i>b</i> -PEO Diblock Copolymers. Macromolecules, 2008, 41, 879-889.	4.8	87
112	Fibrillisation of hydrophobically modified amyloid peptide fragments in an organic solvent. Soft Matter, 2007, 3, 1401.	2.7	84
113	Structural Study of BSA/Poly(ethylene glycol) Lipid Conjugate Complexes. Journal of Physical Chemistry B, 2007, 111, 11330-11336.	2.6	11
114	Complex Formation of Bovine Serum Albumin with a Poly(ethylene glycol) Lipid Conjugate. Biomacromolecules, 2007, 8, 2244-2249.	5.4	38
115	β-Lactoglobulin Fibers under Capillary Flow. Biomacromolecules, 2007, 8, 77-83.	5.4	22
116	Wormlike Micelle Formation and Flow Alignment of a Pluronic Block Copolymer in Aqueous Solution. Langmuir, 2007, 23, 6896-6902.	3.5	44
117	A SAXS study of the structure of gels formed by mixtures of polyoxyalkylene triblock copolymers. Polymer International, 2007, 56, 88-92.	3.1	7
118	Capillary flow behavior of worm-like micelles studied by small-angle X-ray scattering and small angle light scattering. Polymers for Advanced Technologies, 2006, 17, 137-144.	3.2	30
119	Spontaneous condensation in DNA-polystyrene- b-poly(l-lysine) polyelectrolyte block copolymer mixtures. European Physical Journal E, 2006, 20, 1-6.	1.6	10
120	Melt Structure and its Transformation by Sequential Crystallization of the Two Blocks within Poly(L-lactide)-block-Poly(É>-caprolactone) Double Crystalline Diblock Copolymers. Macromolecular Chemistry and Physics, 2006, 207, 941-953.	2.2	106
121	Thermo-responsive Poly(methyl methacrylate)-block-poly(N-isopropylacrylamide) Block Copolymers Synthesized by RAFT Polymerization: Micellization and Gelation. Macromolecular Chemistry and Physics, 2006, 207, 1718-1726.	2.2	85
122	Ordering on multiple lengthscales in a series of side group liquid crystal block copolymers containing a cholesteryl-based mesogen. Soft Matter, 2005, 1, 355.	2.7	79
123	Peptide mediated formation of hierarchically organized solution and solid state polymer nanostructures. Faraday Discussions, 2005, 128, 29-41.	3.2	57
124	Nanostructure formation in poly(γ-benzyl-l-glutamate)–poly(ethylene glycol)–poly(γ-benzyl-l-glutamate) triblock copolymers in the solid state. Soft Matter, 2005, 1, 284.	2.7	22