
Marvin J Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4169529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Syntheses and therapeutic potential of hydroxamic acid based siderophores and analogs. Chemical Reviews, 1989, 89, 1563-1579.	23.0	283
2	T Cell Activation by Lipopeptide Antigens. Science, 2004, 303, 527-531.	6.0	255
3	Development and applications of amino acid-derived chiral acylnitroso hetero Diels-Alder reactions. Tetrahedron, 1998, 54, 1317-1348.	1.0	242
4	The Nitrosocarbonyl Heteroâ€Diels–Alder Reaction as a Useful Tool for Organic Syntheses. Angewandte Chemie - International Edition, 2011, 50, 5630-5647.	7.2	228
5	Hydroxamate approach to the synthesis of .betalactam antibiotics. Accounts of Chemical Research, 1986, 19, 49-56.	7.6	207
6	Studies and Syntheses of Siderophores, Microbial Iron Chelators, and Analogs as Potential Drug Delivery Agents. Current Medicinal Chemistry, 2000, 7, 159-197.	1.2	199
7	Advent of Imidazo[1,2- <i>a</i>]pyridine-3-carboxamides with Potent Multi- and Extended Drug Resistant Antituberculosis Activity. ACS Medicinal Chemistry Letters, 2011, 2, 466-470.	1.3	161
8	A Dual Read-Out Assay to Evaluate the Potency of Compounds Active against Mycobacterium tuberculosis. PLoS ONE, 2013, 8, e60531.	1.1	154
9	Synthesis of .betalactams from substituted hydroxamic acids. Journal of the American Chemical Society, 1980, 102, 7026-7032.	6.6	153
10	Design, Synthesis, and Study of a Mycobactinâ~'Artemisinin Conjugate That Has Selective and Potent Activity against Tuberculosis and Malaria. Journal of the American Chemical Society, 2011, 133, 2076-2079.	6.6	134
11	Exploiting bacterial iron acquisition: siderophore conjugates. Future Medicinal Chemistry, 2012, 4, 297-313.	1.1	132
12	Molecular Mechanism of Lipopeptide Presentation by CD1a. Immunity, 2005, 22, 209-219.	6.6	122
13	Iron Transport-Mediated Drug Delivery: Practical Syntheses and In Vitro Antibacterial Studies of Tris-Catecholate Siderophore–Aminopenicillin Conjugates Reveals Selectively Potent Antipseudomonal Activity. Journal of the American Chemical Society, 2012, 134, 9898-9901.	6.6	119
14	Titanium trichloride reduction of substituted N-hydroxy-2-azetidinones and other hydroxamic acids. Journal of Organic Chemistry, 1980, 45, 410-415.	1.7	118
15	Trihydroxamate Siderophore–Fluoroquinolone Conjugates Are Selective Sideromycin Antibiotics that Target Staphylococcus aureus. Bioconjugate Chemistry, 2013, 24, 473-486.	1.8	112
16	Microbial iron chelators as drug delivery agents: the rational design and synthesis of siderophore-drug conjugates. Accounts of Chemical Research, 1993, 26, 241-249.	7.6	111
17	Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin "Trojan Horse―antibiotics and synthetic desferridanoxamine-antibiotic conjugates. BioMetals, 2009, 22, 633-648.	1.8	110
18	Biscatecholate–Monohydroxamate Mixed Ligand Siderophore–Carbacephalosporin Conjugates are Selective Sideromycin Antibiotics that Target Acinetobacter baumannii. Journal of Medicinal Chemistry, 2013, 56, 4044-4052.	2.9	107

#	Article	IF	CITATIONS
19	Total Synthesis of a Mycobactin S, a Siderophore and Growth Promoter of Mycobacterium Smegmatis, and Determination of its Growth Inhibitory Activity against Mycobacterium tuberculosis. Journal of the American Chemical Society, 1997, 119, 3462-3468.	6.6	101
20	Targeted Antibiotic Delivery: Selective Siderophore Conjugation with Daptomycin Confers Potent Activity against Multidrug Resistant <i>Acinetobacter baumannii</i> Both in Vitro and in Vivo. Journal of Medicinal Chemistry, 2017, 60, 4577-4583.	2.9	100
21	Structure–activity relationship of new anti-tuberculosis agents derived from oxazoline and oxazole benzyl esters. European Journal of Medicinal Chemistry, 2010, 45, 1703-1716.	2.6	99
22	A Synthetic Dual Drug Sideromycin Induces Gram-Negative Bacteria To Commit Suicide with a Gram-Positive Antibiotic. Journal of Medicinal Chemistry, 2018, 61, 3845-3854.	2.9	98
23	Advancement of Imidazo[1,2- <i>a</i>]pyridines with Improved Pharmacokinetics and nM Activity vs. <i>Mycobacterium tuberculosis</i> . ACS Medicinal Chemistry Letters, 2013, 4, 675-679.	1.3	97
24	Generation and exploration of new classes of antitubercular agents: The optimization of oxazolines, oxazoles, thiazolines, thiazoles to imidazo[1,2-a]pyridines and isomeric 5,6-fused scaffolds. Bioorganic and Medicinal Chemistry, 2012, 20, 2214-2220.	1.4	96
25	Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents. BioMetals, 2009, 22, 61-75.	1.8	89
26	Total synthesis of a mycobactin: mycobactin S2. Journal of the American Chemical Society, 1983, 105, 240-245.	6.6	86
27	Natural ferric ionophores: total synthesis of schizokinen, schizokinen A, and arthrobactin. Journal of Organic Chemistry, 1983, 48, 24-31.	1.7	85
28	Iron chelators from mycobacteria (1954–1999) and potential therapeutic applications. Natural Product Reports, 2000, 17, 99-116.	5.2	84
29	Iron transport-mediated drug delivery using mixed-ligand siderophore-β-lactam conjugates. Chemistry and Biology, 1996, 3, 1011-1019.	6.2	80
30	Nitroso Diels–Alder (NDA) reaction as an efficient tool for the functionalization of diene-containing natural products. Organic and Biomolecular Chemistry, 2014, 12, 7445-7468.	1.5	75
31	Intramolecular electrophilic additions to olefins in organic syntheses. Stereoselective synthesis of 3,4-substituted .betalactams by bromine-induced oxidative cyclization of O-acyl .betagammaunsaturated hydroxamic acid derivatives. Journal of Organic Chemistry, 1987, 52, 4471-4477.	1.7	74
32	Amino Acid-Derived Chiral Acyl Nitroso Compounds: Diastereoselectivity in Intermolecular Hetero Diels-Alder Reactions. Journal of Organic Chemistry, 1994, 59, 4602-4611.	1.7	74
33	Microbial iron chelators: total synthesis of aerobactin and its constituent amino acid, N6-acetyl-N6-hydroxylysine. Journal of the American Chemical Society, 1982, 104, 3096-3101.	6.6	73
34	Enzymatic Resolution of Aminocyclopentenols as Precursors tod- andl-Carbocyclic Nucleosides. Journal of Organic Chemistry, 1998, 63, 3357-3363.	1.7	73
35	Thiolates Chemically Induce Redox Activation of BTZ043 and Related Potent Nitroaromatic Anti-Tuberculosis Agents. Journal of the American Chemical Society, 2013, 135, 3539-3549.	6.6	72
36	Total Syntheses of Mycobactin Analogues as Potent Antimycobacterial Agents Using a Minimal Protecting Group Strategy. Journal of Organic Chemistry, 1998, 63, 4314-4322.	1.7	71

#	Article	IF	CITATIONS
37	Chemical syntheses and in vitro antibacterial activity of two desferrioxamine B-ciprofloxacin conjugates with potential esterase and phosphatase triggered drug release linkers. Bioorganic and Medicinal Chemistry, 2012, 20, 3828-3836.	1.4	71
38	Stereoselective Total Synthesis of Racemic BCX-1812 (RWJ-270201) for the Development of Neuraminidase Inhibitors as Anti-influenza Agents. Journal of Organic Chemistry, 2003, 68, 6591-6596.	1.7	69
39	Synthesis of 2-azetidinones from serinehydroxamates: approaches to the synthesis of 3-aminonocardicinic acid. Journal of Organic Chemistry, 1981, 46, 1557-1564.	1.7	68
40	Cysteine- and serine-derived thiazolidinethiones and oxazolidinethiones as efficient chiral auxiliaries in aldol condensations. Journal of Organic Chemistry, 1987, 52, 2201-2206.	1.7	67
41	Practical Synthesis of Hydroxamate-Derived Siderophore Components by an Indirect Oxidation Method and Syntheses of a DIGâ^'Siderophore Conjugate and a Biotinâ^'Siderophore Conjugate. Journal of Organic Chemistry, 1999, 64, 7451-7458.	1.7	64
42	Arrival of Imidazo[2,1- <i>b</i>]thiazole-5-carboxamides: Potent Anti-tuberculosis Agents That Target QcrB. ACS Infectious Diseases, 2016, 2, 393-398.	1.8	64
43	Targeting the Mycobacterium ulcerans cytochrome bc1:aa3 for the treatment of Buruli ulcer. Nature Communications, 2018, 9, 5370.	5.8	64
44	Chemoenzymatic Synthesis and Synthetic Application of Enantiopure Aminocyclopentenols:Â Total Synthesis of Carbocyclic (+)-Uracil Polyoxin C and Its α-Epimer. Journal of Organic Chemistry, 2004, 69, 4538-4540.	1.7	60
45	The Hetero Dielsâ ^{~;} Alder Reactions betweend-Mannose-Derived Halonitroso Compounds and Cyclopentadiene:Â Scope and Limitations. Journal of Organic Chemistry, 1998, 63, 885-888.	1.7	59
46	Synthesis and in vitro antibacterial activity of spermidine-based mixed catechol- and hydroxamate-containing siderophore—Vancomycin conjugates. Bioorganic and Medicinal Chemistry, 1996, 4, 43-48.	1.4	56
47	Titanocene(III) Chloride-Mediated Reductions of Oxazines, Hydroxamic Acids, and <i>N</i> -Hydroxy Carbamates. Journal of Organic Chemistry, 2009, 74, 448-451.	1.7	56
48	Regio- and Stereoselective Ring Openings of 3-Aza-2-oxabicyclo[2.2.1]hept-5-ene Systems with Copper Catalyst-Modified Grignard Reagents:Â Application to the Synthesis of an Inhibitor of 5-Lipoxygenase. Journal of Organic Chemistry, 2002, 67, 4115-4121.	1.7	54
49	Design, Syntheses, and Anti-TB Activity of 1,3-Benzothiazinone Azide and Click Chemistry Products Inspired by BTZ043. ACS Medicinal Chemistry Letters, 2016, 7, 266-270.	1.3	54
50	Synthesis and biological activity of substituted [[3(S)-(acylamino)-2-oxo-1-azetidinyl]oxy]acetic acids. A new class of heteroatom-activated .betalactam antibiotics. Journal of Medicinal Chemistry, 1985, 28, 1447-1453.	2.9	52
51	Diastereoselective synthesis of the carbacephem framework. Journal of Organic Chemistry, 1993, 58, 618-625.	1.7	52
52	Enantioselective Total Syntheses of [6R,7R] and [6S,7S] Tricyclic Î ² -Lactams. Journal of Organic Chemistry, 1996, 61, 1014-1022.	1.7	52
53	Novel 1,4-Benzodiazepines from Acylnitroso-Derived Hetero-Dielsâ^ Alder Cycloadducts. Organic Letters, 2002, 4, 139-141.	2.4	50
54	A facile synthesis of substituted N-hydroxy-2-azetidinones. A biogenetic type .betalactam synthesis. Journal of the American Chemical Society, 1979, 101, 3983-3985.	6.6	49

#	Article	IF	CITATIONS
55	Total Synthesis of Exochelin MN and Analogues. Journal of Organic Chemistry, 2002, 67, 4759-4770.	1.7	49
56	Syntheses of Siderophore–Drug Conjugates Using a Convergent Thiol–Maleimide System. ACS Medicinal Chemistry Letters, 2012, 3, 799-803.	1.3	49
57	Heteroatom activated β-lactam antibiotics: Synthesis of biologically active substituted N-oxy-3-amino-2-azetidinones (oxamazins). Tetrahedron Letters, 1984, 25, 3293-3296.	0.7	47
58	Total Synthesis of Desferrisalmycin B. Journal of the American Chemical Society, 2002, 124, 15001-15005.	6.6	47
59	Synthesis and Anticancer Activity of New Hydroxamic Acid Containing 1,4-Benzodiazepines. Organic Letters, 2009, 11, 1575-1578.	2.4	47
60	Inâ€Vivo Dearomatization of the Potent Antituberculosis Agent BTZ043 via Meisenheimer Complex Formation. Angewandte Chemie - International Edition, 2017, 56, 2187-2191.	7.2	47
61	Dual inhibition of the terminal oxidases eradicates antibioticâ€ŧolerant <i>Mycobacterium tuberculosis</i> . EMBO Molecular Medicine, 2021, 13, e13207.	3.3	47
62	Synthesis and siderophore activity of albomycin-like peptides derived from N5-acetyl-N5-hydroxy-L-ornithine. Journal of Medicinal Chemistry, 1991, 34, 956-968.	2.9	46
63	Diastereoselective addition of nucleophiles to the C3 position of N-(tosyloxy)betalactams. Journal of the American Chemical Society, 1993, 115, 548-554.	6.6	46
64	Bactericidal Activity of an Imidazo[1, 2-a]pyridine Using a Mouse M. tuberculosis Infection Model. PLoS ONE, 2014, 9, e87483.	1.1	46
65	Syntheses and Antituberculosis Activity of 1,3-Benzothiazinone Sulfoxide and Sulfone Derived from BTZ043. ACS Medicinal Chemistry Letters, 2015, 6, 128-133.	1.3	45
66	Regio- and Stereochemically Controlled Formation of Hydroxamic Acid Containinganti- orsyn-1,4-Cycloalkenols from Acylnitroso-Derived Dielsâ^'Alder Adducts. Journal of Organic Chemistry, 2001, 66, 2466-2469.	1.7	44
67	Iminonitroso Dielsâ^'Alder Reactions for Efficient Derivatization and Functionalization of Complex Diene-Containing Natural Products. Organic Letters, 2007, 9, 2923-2926.	2.4	44
68	Syntheses of Amamistatin Fragments and Determination of Their HDAC and Antitumor Activity. Organic Letters, 2007, 9, 1683-1685.	2.4	44
69	Siderophore–fluoroquinolone conjugates containing potential reduction-triggered linkers for drug release: synthesis and antibacterial activity. BioMetals, 2015, 28, 541-551.	1.8	44
70	Sideromycins as Pathogen-Targeted Antibiotics. Topics in Medicinal Chemistry, 2017, , 151-183.	0.4	44
71	Reactions of Nitroso Hetero-Dielsâ~'Alder Cycloadducts with Azides:Â Stereoselective Formation of Triazolines and Aziridines. Journal of Organic Chemistry, 2007, 72, 3929-3932.	1.7	43
72	Syntheses and Biological Activity of Amamistatin B and Analogs. Journal of Organic Chemistry, 2008, 73, 1018-1024.	1.7	43

#	Article	IF	CITATIONS
73	Siderophore Conjugates of Daptomycin are Potent Inhibitors of Carbapenem Resistant Strains of <i>Acinetobacter baumannii</i> . ACS Infectious Diseases, 2018, 4, 1529-1535.	1.8	43
74	Regio- and Stereoselective Fe(III)- and Pd(0)-Mediated Ring Openings of 3-Aza-2-oxabicyclo[2.2.1]hept-5-ene Systems. Journal of Organic Chemistry, 1998, 63, 4874-4875.	1.7	42
75	Total Synthesis of the Siderophore Danoxamine. Journal of Organic Chemistry, 2000, 65, 4833-4838.	1.7	42
76	Oxidative cyclization of β,γ-unsaturated O-acyl hydroxamates to β-lactams. Tetrahedron Letters, 1985, 26, 5385-5388.	0.7	41
77	Heteroatom-activated .betalactam antibiotics: considerations of differences in the biological activity of [[3(S)-(acylamino)-2-oxo-1-azetidinyl]oxy]acetic acids (oxamazins) and the corresponding sulfur analogs (thiamazins). Journal of Medicinal Chemistry, 1987, 30, 528-536.	2.9	40
78	Iron Chelation Properties of an Extracellular Siderophore Exochelin MN. Journal of the American Chemical Society, 2003, 125, 7654-7663.	6.6	40
79	Evolution of Natural Product Scaffolds by Acyl- and Arylnitroso Hetero-Dielsâ^'Alder Reactions: New Chemistry on Piperine. Journal of Organic Chemistry, 2008, 73, 4559-4567.	1.7	40
80	Synthesis and siderophore and antibacterial activity of N5-acetyl-N5-hydroxyl-L-ornithine derived siderophorebetalactam conjugates: iron transport mediated drug delivery. Journal of Medicinal Chemistry, 1991, 34, 968-978.	2.9	39
81	Stereo- and Regioselectivity of PdO/InI-Mediated Allylic Additions to Aldehydes and Ketones.In SituGeneration of Allylindium(III) Intermediates fromN-Acylnitroso Dielsâ''Alder Cycloadducts and 1-Amino-4-acetoxycyclopentenes. Journal of Organic Chemistry, 2003, 68, 139-149.	1.7	39
82	Practical synthetic approaches to intermediates for the preparation of the novel O-sulfonated-N-hydroxy-2-azetidinone antibiotics. Tetrahedron, 1983, 39, 2571-2575.	1.0	38
83	N–O Chemistry for Antibiotics: Discovery of <i>N</i> -Alkyl- <i>N</i> -(pyridin-2-yl)hydroxylamine Scaffolds as Selective Antibacterial Agents Using Nitroso Diels–Alder and Ene Chemistry. Journal of Medicinal Chemistry, 2011, 54, 6843-6858.	2.9	38
84	Scaffold-switching: An exploration of 5,6-fused bicyclic heteroaromatics systems to afford antituberculosis activity akin to the imidazo[1,2-a]pyridine-3-carboxylates. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3493-3498.	1.0	38
85	Putting Tuberculosis (TB) To Rest: Transformation of the Sleep Aid, Ambien, and "Anagrams―Generated Potent Antituberculosis Agents. ACS Infectious Diseases, 2015, 1, 85-90.	1.8	38
86	Synthetic sideromycins (skepticism and optimism): selective generation of either broad or narrow spectrum Gram-negative antibiotics. BioMetals, 2019, 32, 425-451.	1.8	38
87	N5-Acetyl-N5-hydroxy-L-ornithine-derived siderophore-carbacephalosporin .betalactam conjugates: iron transport mediated drug delivery. Journal of Medicinal Chemistry, 1990, 33, 461-464.	2.9	37
88	Desketoneoenactin-Siderophore Conjugates for Candida : Evidence of Iron Transport-Dependent Species Selectivity. Antimicrobial Agents and Chemotherapy, 2005, 49, 241-248.	1.4	37
89	Syntheses of Conformationally Constricted Molecules as Potential NAALADase/PSMA Inhibitors. Organic Letters, 2004, 6, 1805-1808.	2.4	36
90	Synthetic Application of Acylnitroso Dielsâ ''Alder Derived Aminocyclopentenols:  Total Synthesis of (+)-Streptazolin. Journal of Organic Chemistry, 2004, 69, 8836-8841.	1.7	36

#	Article	IF	CITATIONS
91	Syntheses and Biological Activity Studies of Novel Sterol Analogs from Nitroso Dielsâ^Alder Reactions of Ergosterol. Organic Letters, 2009, 11, 2828-2831.	2.4	36
92	Iron transport mediated drug delivery systems: synthesis and antibacterial activity of spermidine- and lysine-based siderophorebetalactam conjugates. Bioconjugate Chemistry, 1991, 2, 281-291.	1.8	35
93	Syntheses and Antibacterial Activity of <i>N</i> -Acylated Ciprofloxacin Derivatives Based on the Trimethyl Lock. ACS Medicinal Chemistry Letters, 2015, 6, 707-710.	1.3	35
94	Imidazopyridine Compounds Inhibit Mycobacterial Growth by Depleting ATP Levels. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	35
95	Synthesis of a Conformationally Restricted Substrate Analogue of Siderophore Biosynthetases. Organic Letters, 2001, 3, 519-521.	2.4	34
96	Chemoenzymatic Asymmetric Total Synthesis of Phosphodiesterase Inhibitors:  Preparation of a Polycyclic Pyrazolo[3,4-d]pyrimidine from an Acylnitroso Dielsâ~Alder Cycloadduct-Derived Aminocyclopentenol. Journal of Organic Chemistry, 2005, 70, 2824-2827.	1.7	34
97	Stereoselective Total Synthesis of (+)-Streptazolin by Using a Temporary Silicon-Tethered RCM Strategy. Journal of Organic Chemistry, 2006, 71, 5221-5227.	1.7	34
98	A New Method for the Synthesis ofN.epsilonAcetyl-N.epsilonhydroxy-L-lysine, the Iron-Binding Constituent of Several Important Siderophores. Journal of Organic Chemistry, 1994, 59, 4858-4861.	1.7	33
99	Design and Syntheses of Anti-Tuberculosis Agents Inspired by BTZ043 Using a Scaffold Simplification Strategy. ACS Medicinal Chemistry Letters, 2014, 5, 587-591.	1.3	33
100	Stereo- and regioselectivity of the hetero-Diels–Alder reaction of nitroso derivatives with conjugated dienes. Beilstein Journal of Organic Chemistry, 2016, 12, 1949-1980.	1.3	33
101	Enzymatic Deprotection of the Cephalosporin 3′-Acetoxy Group Using Candida antarctica Lipase B. Journal of Organic Chemistry, 2010, 75, 1289-1292.	1.7	32
102	Efficient functionalization of acylnitroso cycloadducts: Application to the syntheses of carbocyclic nucleoside precursors. Tetrahedron Letters, 1996, 37, 3799-3802.	0.7	31
103	An enantioselective synthesis of the cyclopentene fragment of nucleoside Q. Tetrahedron Letters, 2003, 44, 4571-4573.	0.7	31
104	Solid-Supported Nitroso Hetero Diels–Alder Reactions. 2. Arylnitroso Dienophiles: Scope and Limitations. ACS Combinatorial Science, 2008, 10, 104-111.	3.3	31
105	Syntheses of New Spirocarbocyclic Nucleoside Analogs Using Iminonitroso Dielsâ^'Alder Reactions. Organic Letters, 2009, 11, 449-452.	2.4	31
106	Design and Syntheses of New Antibiotics Inspired by Nature's Quest for Iron in an Oxidative Climate. Accounts of Chemical Research, 2021, 54, 1646-1661.	7.6	31
107	Potent mechanism-based inhibition of the TEM-1 .betalactamase by novel N-sulfonyloxy .betalactams. Journal of the American Chemical Society, 1995, 117, 5938-5943.	6.6	29
108	Elucidation of Mechanism of Inhibition and X-ray Structure of the TEM-1 β-Lactamase from Escherichia coli Inhibited by a N-Sulfonyloxy-β-lactam. Journal of the American Chemical Society, 1999, 121, 5353-5359.	6.6	29

#	Article	IF	CITATIONS
109	Oxidation of Primary Amines to Oxaziridines Using Molecular Oxygen (O2) as the Ultimate Oxidant. Journal of Organic Chemistry, 2001, 66, 8282-8285.	1.7	29
110	Concise Synthesis of 4-Acylamino Analogues of 2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylic Acids (LY354740) from an Acylnitroso Dielsâ~Alder Cycloadduct. Journal of Organic Chemistry, 2004, 69, 4516-4519.	1.7	29
111	Syntheses and studies of quinolone-cephalosporins as potential anti-tuberculosis agents. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5534-5537.	1.0	29
112	Syntheses and biological evaluation of ring-C modified colchicine analogs. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3831-3833.	1.0	29
113	Constituents of microbial iron chelators. The synthesis of optically active derivatives of δ-N-hydroxy-L-ornithine Tetrahedron Letters, 1984, 25, 927-930.	0.7	28
114	An efficient synthesis of cobactin T, a key component of the mycobactin class of siderophores. Tetrahedron Letters, 1995, 36, 6379-6382.	0.7	28
115	Asymmetric Total Synthesis of an Important 3-(Hydroxymethyl)carbacephalosporin. Journal of Organic Chemistry, 1998, 63, 1221-1225.	1.7	28
116	Conformational Study and Enantioselective, Regiospecific Syntheses of Novel Aminoxytrans-Proline Analogues Derived from an Acylnitroso Dielsâ^'Alder Cycloaddition. Journal of Organic Chemistry, 2001, 66, 6046-6056.	1.7	28
117	The synthesis and in vitro testing of structurally novel antibiotics derived from acylnitroso Diels–Alder adducts. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3966-3970.	1.0	28
118	Solid-Supported Nitroso Hetero Diels–Alder Reactions. 1. Acylnitroso Dienophiles: Scope and Limitations. ACS Combinatorial Science, 2008, 10, 94-103.	3.3	27
119	Pd(0)/InI-Mediated Allylic Additions to 4-Acetoxy-2-azetidinone: New Route to Highly Functionalized Carbocyclic Scaffolds. Organic Letters, 2009, 11, 1293-1295.	2.4	27
120	Syntheses and biological evaluation of new cephalosporin-oxazolidinone conjugates. MedChemComm, 2010, 1, 145.	3.5	27
121	Artificial siderophores. 2. Syntheses of trihydroxamate analogs of rhodotorulic acid and their biological iron transport capabilities in Escherichia coli. Journal of Medicinal Chemistry, 1985, 28, 323-327.	2.9	26
122	Functionalization of the .betalactam ring: diastereoselective azide transfer and nitrogen-oxygen bond reduction on C4 substituted N-hydroxybetalactams in one step. Journal of the American Chemical Society, 1992, 114, 2741-2743.	6.6	26
123	Synthesis of enantiomerically pure 5'-aza-noraristeromycin analogs. Journal of Organic Chemistry, 1995, 60, 5808-5813.	1.7	26
124	Selective growth promotion and growth inhibition of gram-negative and gram-positive bacteria by synthetic siderophore-beta-lactam conjugates. BioMetals, 1998, 11, 1-12.	1.8	26
125	Novel α-substituted β-amino diesters from acylnitroso-derived hetero-Diels–Alder cycloadducts. Tetrahedron Letters, 2002, 43, 1131-1134.	0.7	26
126	Substrate-Dependent Dihydroxylation of Substituted Cyclopentenes:Â Toward the Syntheses of Carbocyclic Sinefungin and Noraristeromycin. Journal of Organic Chemistry, 2006, 71, 4164-4169.	1.7	26

#	Article	IF	CITATIONS
127	Carbon metabolism modulates the efficacy of drugs targeting the cytochrome bc1:aa3 in Mycobacterium tuberculosis. Scientific Reports, 2019, 9, 8608.	1.6	26
128	Intracellular and in vivo evaluation of imidazo[2,1-b]thiazole-5-carboxamide anti-tuberculosis compounds. PLoS ONE, 2020, 15, e0227224.	1.1	26
129	Substrate specificity studies of aldolase enzymes for use in organic synthesis. Journal of the Chemical Society Chemical Communications, 1990, , 1107.	2.0	25
130	Syntheses of novel hydroxylamine carbanucleosides. Tetrahedron, 1998, 54, 6605-6626.	1.0	25
131	Syntheses of mycobactin analogs as potent and selective inhibitors of Mycobacterium tuberculosis. Organic and Biomolecular Chemistry, 2012, 10, 7584.	1.5	25
132	Imidazo[1,2- <i>a</i>]Pyridine-3-Carboxamides Are Active Antimicrobial Agents against Mycobacterium avium Infection <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2016, 60, 5018-5022.	1.4	25
133	Syntheses of 5â€~-Deoxy-5â€~-N-hydroxylaminopyrimidine and Purine Nucleosides: Building Blocks for Novel Antisense Oligonucleosides with Hydroxamate Linkages. Journal of Organic Chemistry, 1999, 64, 9289-9293.	1.7	24
134	N-Sulfonyloxy-β-lactam Inhibitors for β-Lactamases. Tetrahedron, 2000, 56, 5719-5728.	1.0	23
135	Methodology for Monobactam Diversification: Syntheses and Studies of 4-Thiomethyl Substituted β-Lactams with Activity against Gram-Negative Bacteria, Including Carbapenemase Producing <i>Acinetobacter baumannii</i> . Journal of Medicinal Chemistry, 2017, 60, 8933-8944.	2.9	23
136	Antibiotic repurposing: bis-catechol- and mixed ligand (bis-catechol-mono-hydroxamate)-teicoplanin conjugates are active against multidrug resistant Acinetobacter baumannii. Journal of Antibiotics, 2020, 73, 152-157.	1.0	23
137	Rapid syntheses of either enantiomer of important carbocyclic nucleoside precursors. Tetrahedron Letters, 2000, 41, 9537-9540.	0.7	22
138	Syntheses and antibacterial activity studies of new oxazolidinones from nitroso Diels–Alder chemistry. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 1302-1305.	1.0	22
139	Asymmetric synthesis of an important precursor to 5′-nor carbocyclic nucleosides. Tetrahedron Letters, 1997, 38, 2803-2804.	0.7	21
140	Synthesis of Enantiomerically and Diastereomerically Pure 2(S)-Amino-6(R)-hydroxy-1,7-heptanedioic Acid Dimethyl Ester Hydrochloride from Cycloheptadiene. Journal of Organic Chemistry, 2001, 66, 4809-4813.	1.7	21
141	Diastereoselective Synthesis of a Spironoraristeromycin Using an Acylnitroso Dielsâ [~] Alder Reaction ^{â€} †We dedicate this paper to Prof. Jeremiah P. Freeman on the occasion of his 80th birthday and with deep gratitude for his 25 years of service to organic chemistry as secretary of <i>Organic Syntheses</i> Journal of Organic Chemistry, 2009, 74, 5941-5946.	1.7	21
142	Oxazoline formation via a palladium-catalyzed cyclization: A direct, stereoselective approach to cis-5-amino-2-cyclopenten-1-ol derivatives. Tetrahedron Letters, 1995, 36, 2913-2916.	0.7	20
143	Inhibition of the Broad Spectrum Nonmetallocarbapenamase of Class A (NMC-A) β-Lactamase from Enterobacter cloacae by Monocyclic β-Lactams. Journal of Biological Chemistry, 1999, 274, 25260-25265.	1.6	20
144	Synthesis and Biological Activity of Hydroxamic Acid-Derived Vasopeptidase Inhibitor Analogues. Organic Letters, 2002, 4, 2047-2050.	2.4	20

#	Article	IF	CITATIONS
145	Constituents of microbial iron chelators. Alternate syntheses of .deltaN-hydroxy-L-ornithine derivatives and applications to the synthesis of rhodotorulic acid. Journal of Organic Chemistry, 1984, 49, 2418-2423.	1.7	19
146	Asymmetric syntheses of novel amino acids and peptides from acylnitroso-derived cycloadducts. Tetrahedron Letters, 1994, 35, 9379-9382.	0.7	19
147	Conformational and SAR analysis of NAALADase and PSMA inhibitors. Bioorganic and Medicinal Chemistry, 2003, 11, 4455-4461.	1.4	19
148	Solid-Supported Nitroso Hetero-Diels–Alder Reactions. 3. Acid-Mediated Transformation of Cycloadducts by Scission of the Oxazine Câ^'O Bonds. ACS Combinatorial Science, 2008, 10, 112-117.	3.3	19
149	Palladium-Catalyzed Decarboxylative Rearrangements of Allyl 2,2,2-Trifluoroethyl Malonates: Direct Access to Homoallylic Esters. Organic Letters, 2009, 11, 4076-4079.	2.4	19
150	Synthesis of foroxymithine, a microbial fermentation product and angiotensin 1 converting enzyme inhibitor. Journal of Organic Chemistry, 1991, 56, 492-499.	1.7	18
151	Synthesis, bioactivity, and DNA-cleaving ability of desferrioxamine B-nalidixic acid and anthraquinone carboxylic acid conjugates. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 2337-2340.	1.0	18
152	Alternate "Drug―Delivery Utilizing β-Lactam Cores: Syntheses and Biological Evaluation of β-Lactams Bearing Isocyanate Precursors. Journal of Organic Chemistry, 2017, 82, 737-744.	1.7	18
153	Whole-cell biosensing by siderophore-based molecular recognition and localized surface plasmon resonance. Analytical Methods, 2019, 11, 296-302.	1.3	18
154	New C-3′ hydroxamate-substituted and more lipophilic cyclic hydroxamate cephalosporin derivatives as a potential new generation of selective antimicrobial agents. Organic and Biomolecular Chemistry, 2006, 4, 4178-4185.	1.5	17
155	Design, synthesis and pharmacological activity of novel enantiomerically pure phosphonic acid-based NAALADase inhibitors. Organic and Biomolecular Chemistry, 2007, 5, 826.	1.5	17
156	Syntheses of Carbocyclic Uracil Polyoxin C Analogs: Application of Pd(0)/Ini-Allylation of 4-Acetoxy-2-azetidinoneâ€We dedicate this paper to Professor Jeremiah P. Freeman on the occasion of his 80th birthday and with thanks for his outstanding service to the profession of organic chemistry through his 25 years as secretary of Organic Syntheses Journal of Organic Chemistry, 2009, 74,	1.7	17
157	5730-5733. Preparation and biological evaluation of novel leucomycin analogs derived from nitroso Diels–Alder reactions. Organic and Biomolecular Chemistry, 2010, 8, 691-697.	1.5	17
158	Syntheses and studies of new forms of N-sulfonyloxy β-lactams as potential antibacterial agents and β-lactamase inhibitors. Bioorganic and Medicinal Chemistry, 2015, 23, 6138-6147.	1.4	17
159	Structure guided generation of thieno[3,2- <i>d</i>]pyrimidin-4-amine <i>Mycobacterium tuberculosis bd</i> oxidase inhibitors. RSC Medicinal Chemistry, 2021, 12, 73-77.	1.7	17
160	Syntheses of novel bicyclic β-lactams by intramolecular nucleophile transfer reactions of N-tosyloxy β-lactams. Tetrahedron, 1994, 50, 8275-8292.	1.0	16
161	β-Lactams in synthesis: short syntheses of cobactin analogs. Tetrahedron Letters, 2007, 48, 5103-5105.	0.7	16
162	Utilization of the Suzuki Coupling to Enhance the Antituberculosis Activity of Aryloxazoles. Heterocycles, 2010, 80, 977.	0.4	16

#	Article	IF	CITATIONS
163	Selective Molecular Sequestration with Concurrent Natural Product Functionalization and Derivatization: From Crude Natural Product Extracts to a Single Natural Product Derivative in One Step. Journal of Organic Chemistry, 2011, 76, 10249-10253.	1.7	16
164	Syntheses and studies of amamistatin B analogs reveals that anticancer activity is relatively independent of stereochemistry, ester or amide linkage and select replacement of one of the metal chelating groups. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2611-2615.	1.0	16
165	Preparation and Evaluation of Potent Pentafluorosulfanyl‣ubstituted Antiâ€Tuberculosis Compounds. ChemMedChem, 2017, 12, 1108-1115.	1.6	16
166	Design and synthesis of a novel protected mixed ligand siderophore. Tetrahedron Letters, 2008, 49, 2306-2310.	0.7	15
167	Intermolecular Addition of Amines to anN-Tosyloxy β-Lactam1. Journal of Organic Chemistry, 1996, 61, 7959-7962.	1.7	14
168	BrÃ,nsted acid-mediated opening of nitroso cycloadducts under anhydrous conditions. Tetrahedron Letters, 2009, 50, 796-798.	0.7	14
169	Design and synthesis of a siderophore conjugate as a potent PSMA inhibitor and potential diagnostic agent for prostate cancer. Bioorganic and Medicinal Chemistry, 2008, 16, 1648-1657.	1.4	13
170	Cyclopropanation of nitroso Diels–Alder cycloadducts and application to the synthesis of a 2′,3′-methano carbocyclic nucleoside. Tetrahedron Letters, 2010, 51, 3789-3791.	0.7	13
171	Design, syntheses, and anti-tuberculosis activities of conjugates of piperazino-1,3-benzothiazin-4-ones (pBTZs) with 2,7-dimethylimidazo [1,2-a]pyridine-3-carboxylic acids and 7-phenylacetyl cephalosporins. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2068-2071.	1.0	12
172	Syntheses and biological evaluations of highly functionalized hydroxamate containing and <i>N</i> -methylthio monobactams as anti-tuberculosis and β-lactamase inhibitory agents. MedChemComm, 2016, 7, 141-147.	3.5	12
173	Deuteration of BTZ043 Extends the Lifetime of Meisenheimer Intermediates to the Antituberculosis Nitroso Oxidation State. ACS Medicinal Chemistry Letters, 2019, 10, 1462-1466.	1.3	12
174	β-Lactamase inhibitors derived from N-tosyloxy-β-lactams. Bioorganic and Medicinal Chemistry, 1993, 1, 151-154.	1.4	11
175	Synthesis of optically pure chrysobactin and immunoassay development. BioMetals, 1996, 9, 377-83.	1.8	11
176	Synthesis and Biological Evaluation of a Carbocyclic Azanoraristeromycin Siderophore Conjugate. Nucleosides & Nucleotides, 1999, 18, 217-225.	0.5	11
177	The remarkable hydrophobic effect of a fatty acid side chain on the microbial growth promoting activity of a synthetic siderophore. BioMetals, 2001, 14, 153-157.	1.8	11
178	Regio- and stereochemically controlled formation of hydroxamic acids from indium triflate-mediated nucleophilic ring-opening reactions with acylnitroso-Diels–Alder adducts. Tetrahedron Letters, 2010, 51, 889-891.	0.7	11
179	Syntheses and evaluation of substituted aromatic hydroxamates and hydroxamic acids that target Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4933-4936.	1.0	11
180	Conjugation of Aztreonam, a Synthetic Monocyclic β-Lactam Antibiotic, to a Siderophore Mimetic Significantly Expands Activity Against Gram-Negative Bacteria. ACS Infectious Diseases, 2021, 7, 2979-2986.	1.8	11

#	Article	IF	CITATIONS
181	Syntheses of carbocyclic aminonucleosides and (â^')-epi-4′-carbocyclic puromycin: application of palladium(0)/indium iodide-allylations and tethered aminohydroxylations. Tetrahedron Letters, 2010, 51, 3053-3056.	0.7	10
182	Syntheses of Hydroxamic Acid-Containing Bicyclic Î ² -Lactams via Palladium-Catalyzed Oxidative Amidation of Alkenes. Journal of Organic Chemistry, 2014, 79, 1620-1625.	1.7	10
183	A Siderophore Analog of Fimsbactin from Acinetobacter Hinders Growth of the Phytopathogen Pseudomonas syringae and Induces Systemic Priming of Immunity in Arabidopsis thaliana. Pathogens, 2020, 9, 806.	1.2	10
184	Retro iminonitroso Diels–Alder reactions: interconversion of nitroso cycloadducts. Tetrahedron Letters, 2009, 50, 5879-5883.	0.7	9
185	Regio- and Stereoselective Indium Triflate-Mediated Nucleophilic Ring-Opening Reactions of 3-Aza-2-oxabicyclo[2.2.1]hept-5-ene and -[2.2.2]oct-5-ene Systems. Journal of Organic Chemistry, 2009, 74, 7990-7993.	1.7	8
186	Enantioselective syntheses of carbocyclic nucleosides 5â€2-homocarbovir, epi-4â€2-homocarbovir, and their cyclopropylamine analogs using facially selective Pd-mediated allylations. Tetrahedron, 2011, 67, 825-829.	1.0	8
187	Syntheses and biological studies of novel spiropiperazinyl oxazolidinone antibacterial agents using a spirocyclic diene derived acylnitroso Dielsâ dlder reaction. Bioorganic and Medicinal Chemistry, 2012, 20, 3422-3428.	1.4	8
188	Syntheses and binding studies of oligonucleotides containing N-hydroxycarbamate linkages: potential DNA cleaving antisense oligomers. Tetrahedron Letters, 2000, 41, 4323-4327.	0.7	7
189	Crystallographic evidence for unintended benzisothiazolinone 1-oxide formation from benzothiazinones through oxidation. Acta Crystallographica Section C, Structural Chemistry, 2020, 76, 907-913.	0.2	7
190	Palladium(0)/indium iodide-mediated allylations of electrophiles generated from the hydrolysis of Eschenmoser's salt: one-pot preparation of diverse carbocyclic scaffolds. Tetrahedron Letters, 2010, 51, 3050-3052.	0.7	6
191	Therapeutic Uses of Iron(III) Chelators and Their Antimicrobial Conjugates. , 0, , 413-433.		6
192	Iminonitroso ene reactions: experimental studies on reactivity, regioselectivity, and enantioselectivity. Tetrahedron Letters, 2010, 51, 328-331.	0.7	5
193	Microbial growth promotion studies of exochelin MN and analogues thereof. BioMetals, 2004, 17, 99-104.	1.8	4
194	Novel antisense oligonucleotides containing hydroxamate linkages: targeted iron-triggered chemical nucleases. BioMetals, 2009, 22, 491-510.	1.8	4
195	Hydride-induced Meisenheimer complex formation reflects activity of nitro aromatic anti-tuberculosis compounds. RSC Medicinal Chemistry, 2021, 12, 62-72.	1.7	4
196	Concise syntheses of enantiomerically pure protected 4-hydroxypyroglutamic acid and 4-hydroxyproline from a nitroso-cyclopentadiene cycloadduct. Tetrahedron: Asymmetry, 2008, 19, 2835-2838.	1.8	3
197	Inâ€vivoâ€Dearomatisierung des potenten Antituberkuloseâ€Wirkstoffs BTZ043 durch Bildung eines Meisenheimerâ€Komplexes. Angewandte Chemie, 2017, 129, 2220-2225.	1.6	3
198	Studies at the ionizable position of cephalosporins and penicillins: hydroxamates as substitutes for the traditional carboxylate group. Journal of Antibiotics, 2017, 70, 292-296.	1.0	3

#	Article	IF	CITATIONS
199	Syntheses and Structure–Activity Relationships of N-Phenethyl-Quinazolin-4-yl-Amines as Potent Inhibitors of Cytochrome bd Oxidase in Mycobacterium tuberculosis. Applied Sciences (Switzerland), 2021, 11, 9092.	1.3	3
200	Synthesis of Fragments of the Peptide Component of Pseudobactin. Journal of Peptide Science, 1996, 2, 157-164.	0.8	2
201	Diastereoselective synthesis of a hydroxamate containing bicyclo-[3.2.0] β-lactam aminal via ruthenium alkene isomerization and Pd(II)-catalyzed oxidative amidation. Tetrahedron Letters, 2015, 56, 3141-3143.	0.7	2
202	Synthesis and antimalarial activity of amide and ester conjugates of siderophores and ozonides. BioMetals, 2022, , 1.	1.8	2
203	Innentitelbild: Inâ€vivoâ€Dearomatisierung des potenten Antituberkuloseâ€Wirkstoffs BTZ043 durch Bildung eines Meisenheimerâ€Komplexes (Angew. Chem. 8/2017). Angewandte Chemie, 2017, 129, 1960-1960.	1.6	0
204	Siderophore-Mediated Iron Acquisition: Target for the Development of Selective Antibiotics Towards Mycobacterium tuberculosis. Springer Briefs in Molecular Science, 2013, , 65-88.	0.1	0