## Jose Abraham Torres-Alavez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4169397/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Regional Climate Modeling for the Developing World: The ICTP RegCM3 and RegCNET. Bulletin of the American Meteorological Society, 2007, 88, 1395-1410.                                           | 3.3  | 847       |
| 2  | Introduction to special section: Regional Climate Modeling Revisited. Journal of Geophysical Research, 1999, 104, 6335-6352.                                                                     | 3.3  | 808       |
| 3  | Development of a Second-Generation Regional Climate Model (RegCM2). Part I: Boundary-Layer and Radiative Transfer Processes. Monthly Weather Review, 1993, 121, 2794-2813.                       | 1.4  | 678       |
| 4  | Development of a Second-Generation Regional Climate Model (RegCM2). Part II: Convective Processes and Assimilation of Lateral Boundary Conditions. Monthly Weather Review, 1993, 121, 2814-2832. | 1.4  | 659       |
| 5  | Precipitation Climatology in an Ensemble of CORDEX-Africa Regional Climate Simulations. Journal of Climate, 2012, 25, 6057-6078.                                                                 | 3.2  | 536       |
| 6  | A regional climate model for the western United States. Climatic Change, 1989, 15, 383.                                                                                                          | 3.6  | 494       |
| 7  | Regional Dynamical Downscaling and the CORDEX Initiative. Annual Review of Environment and Resources, 2015, 40, 467-490.                                                                         | 13.4 | 484       |
| 8  | The Climatological Skill of a Regional Model over Complex Terrain. Monthly Weather Review, 1989, 117, 2325-2347.                                                                                 | 1.4  | 410       |
| 9  | Heat stress intensification in the Mediterranean climate change hotspot. Geophysical Research<br>Letters, 2007, 34, .                                                                            | 4.0  | 361       |
| 10 | Thirty Years of Regional Climate Modeling: Where Are We and Where Are We Going next?. Journal of<br>Geophysical Research D: Atmospheres, 2019, 124, 5696-5723.                                   | 3.3  | 358       |
| 11 | Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophysical Research Letters, 2006, 33, .                 | 4.0  | 314       |
| 12 | Mean, interannual variability and trends in a regional climate change experiment over Europe. II:<br>climate change scenarios (2071?2100). Climate Dynamics, 2004, 23, 839-858.                  | 3.8  | 297       |
| 13 | WCRP COordinated Regional Downscaling EXperiment (CORDEX): a diagnostic MIP for CMIP6.<br>Geoscientific Model Development, 2016, 9, 4087-4095.                                                   | 3.6  | 286       |
| 14 | Evaluating uncertainties in the prediction of regional climate change. Geophysical Research Letters, 2000, 27, 1295-1298.                                                                        | 4.0  | 237       |
| 15 | Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data. Journal of Climate, 2020, 33, 3635-3661.                                                                           | 3.2  | 230       |
| 16 | Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community. Regional Environmental Change, 2020, 20, 1.                                                               | 2.9  | 227       |
| 17 | Enhanced summer convective rainfall at Alpine high elevations in response to climate warming.<br>Nature Geoscience, 2016, 9, 584-589.                                                            | 12.9 | 197       |
| 18 | Percentile indices for assessing changes in heavy precipitation events. Climatic Change, 2016, 137, 201-216.                                                                                     | 3.6  | 197       |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophysical Research Letters, 2004, 31, n/a-n/a.                                                                | 4.0 | 196       |
| 20 | Climate change hotspots in the United States. Geophysical Research Letters, 2008, 35, .                                                                                                                                           | 4.0 | 196       |
| 21 | Land surface coupling in regional climate simulations of the West African monsoon. Climate Dynamics, 2009, 33, 869-892.                                                                                                           | 3.8 | 195       |
| 22 | Direct radiative forcing and regional climatic effects of anthropogenic aerosols over East Asia: A<br>regional coupled climate-chemistry/aerosol model study. Journal of Geophysical Research, 2002, 107,<br>AAC 7-1.             | 3.3 | 155       |
| 23 | Time of emergence (TOE) of GHCâ€forced precipitation change hotâ€spots. Geophysical Research Letters,<br>2009, 36, .                                                                                                              | 4.0 | 136       |
| 24 | Extension and Intensification of the Meso-American mid-summer drought in the twenty-first century.<br>Climate Dynamics, 2008, 31, 551-571.                                                                                        | 3.8 | 125       |
| 25 | Title is missing!. Climatic Change, 2003, 58, 345-376.                                                                                                                                                                            | 3.6 | 120       |
| 26 | Climate Change Prediction. Climatic Change, 2005, 73, 239-265.                                                                                                                                                                    | 3.6 | 120       |
| 27 | The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I:<br>evaluation of precipitation. Climate Dynamics, 2021, 57, 275-302.                                                        | 3.8 | 114       |
| 28 | Simulation of the Indian monsoon using the RegCM3–ROMS regional coupled model. Climate Dynamics, 2009, 33, 119-139.                                                                                                               | 3.8 | 113       |
| 29 | Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Climatic Change, 2014, 125, 39-51.                                                                                                               | 3.6 | 113       |
| 30 | Regional climatic effects of anthropogenic aerosols? The case of southwestern China. Geophysical<br>Research Letters, 2000, 27, 3521-3524.                                                                                        | 4.0 | 104       |
| 31 | The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: historical and future simulations of precipitation. Climate Dynamics, 2021, 56, 3581-3602.                                   | 3.8 | 101       |
| 32 | Simulation of South Asian aerosols for regional climate studies. Journal of Geophysical Research, 2012, 117, .                                                                                                                    | 3.3 | 100       |
| 33 | Scaling precipitation extremes with temperature in the Mediterranean: past climate assessment and projection in anthropogenic scenarios. Climate Dynamics, 2018, 51, 1237-1257.                                                   | 3.8 | 100       |
| 34 | Effects of a Subgrid-Scale Topography and Land Use Scheme on the Simulation of Surface Climate and<br>Hydrology. Part I: Effects of Temperature and Water Vapor Disaggregation. Journal of<br>Hydrometeorology, 2003, 4, 317-333. | 1.9 | 99        |
| 35 | Changes in European temperature extremes can be predicted from changes in PDF central statistics.<br>Climatic Change, 2010, 98, 277-284.                                                                                          | 3.6 | 90        |
| 36 | An assessment of temperature and precipitation change projections over Italy from recent global and regional climate model simulations. International Journal of Climatology, 2010, 30, 11-32.                                    | 3.5 | 87        |

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Does the model regional bias affect the projected regional climate change? An analysis of global<br>model projections. Climatic Change, 2010, 100, 787-795.                                                                                                   | 3.6 | 83        |
| 38 | Climate hazard indices projections based on CORDEX-CORE, CMIP5 and CMIP6 ensemble. Climate Dynamics, 2021, 57, 1293.                                                                                                                                          | 3.8 | 83        |
| 39 | Future changes in Central Europe heat waves expected to mostly follow summer mean warming.<br>Climate Dynamics, 2010, 35, 1191-1205.                                                                                                                          | 3.8 | 82        |
| 40 | Projected Heat Stress Under 1.5°C and 2°C Global Warming Scenarios Creates Unprecedented<br>Discomfort for Humans in West Africa. Earth's Future, 2018, 6, 1029-1044.                                                                                         | 6.3 | 81        |
| 41 | Climate change impact on precipitation for the Amazon and La Plata basins. Climatic Change, 2014, 125, 111-125.                                                                                                                                               | 3.6 | 68        |
| 42 | Assessing mean climate change signals in the global CORDEX-CORE ensemble. Climate Dynamics, 2021, 57, 1269.                                                                                                                                                   | 3.8 | 63        |
| 43 | Present and future climatologies in the phase I CREMA experiment. Climatic Change, 2014, 125, 23-38.                                                                                                                                                          | 3.6 | 55        |
| 44 | Land Use Change over the Amazon Forest and Its Impact on the Local Climate. Water (Switzerland), 2018, 10, 149.                                                                                                                                               | 2.7 | 53        |
| 45 | Regional simulation of anthropogenic sulfur over East Asia and its sensitivity to model parameters.<br>Tellus, Series B: Chemical and Physical Meteorology, 2022, 53, 171.                                                                                    | 1.6 | 50        |
| 46 | European climateâ€change oscillation (ECO). Geophysical Research Letters, 2007, 34, .                                                                                                                                                                         | 4.0 | 49        |
| 47 | Changing hydrological conditions in the Po basin under global warming. Science of the Total<br>Environment, 2014, 493, 1183-1196.                                                                                                                             | 8.0 | 49        |
| 48 | Inter-annual variability of precipitation over Southern Mexico and Central America and its<br>relationship to sea surface temperature from a set of future projections from CMIP5 GCMs and<br>RegCM4 CORDEX simulations. Climate Dynamics, 2015, 45, 425-440. | 3.8 | 49        |
| 49 | A multimodel intercomparison of resolution effects on precipitation: simulations and theory. Climate Dynamics, 2016, 47, 2205-2218.                                                                                                                           | 3.8 | 49        |
| 50 | Current and future potential of solar and wind energy over Africa using the RegCM4 CORDEX-CORE ensemble. Climate Dynamics, 2021, 57, 1647.                                                                                                                    | 3.8 | 49        |
| 51 | Robust late twenty-first century shift in the regional monsoons in RegCM-CORDEX simulations.<br>Climate Dynamics, 2021, 57, 1463-1488.                                                                                                                        | 3.8 | 47        |
| 52 | Dependence of the surface climate interannual variability on spatial scale. Geophysical Research<br>Letters, 2002, 29, 16-1-16-4.                                                                                                                             | 4.0 | 45        |
| 53 | Convection suppression criteria applied to the MIT cumulus parameterization scheme for simulating the Asian summer monsoon. Geophysical Research Letters, 2006, 33, .                                                                                         | 4.0 | 40        |
| 54 | A new spatially distributed added value index for regional climate models: the EURO-CORDEX and the CORDEX-CORE highest resolution ensembles. Climate Dynamics, 2021, 57, 1403-1424.                                                                           | 3.8 | 40        |

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Projected seasonal mean summer monsoon over India and adjoining regions for the twenty-first century. Theoretical and Applied Climatology, 2015, 122, 581-593.                                                                  | 2.8 | 39        |
| 56 | Mediterranean warm-core cyclones in a warmer world. Climate Dynamics, 2014, 42, 1053-1066.                                                                                                                                      | 3.8 | 37        |
| 57 | The CORDEX-CORE EXP-I Initiative: Description and Highlight Results from the Initial Analysis. Bulletin of the American Meteorological Society, 2022, 103, E293-E310.                                                           | 3.3 | 35        |
| 58 | The role of ENSO and PDO in variability of winter precipitation over North America from twenty first century CMIP5 projections. Climate Dynamics, 2016, 46, 3259-3277.                                                          | 3.8 | 34        |
| 59 | Program focuses on climate of the Mediterranean region. Eos, 2012, 93, 105-106.                                                                                                                                                 | 0.1 | 31        |
| 60 | Indian Summer Monsoon as simulated by the regional earth system model RegCM-ES: the role of local air–sea interaction. Climate Dynamics, 2019, 53, 759-778.                                                                     | 3.8 | 31        |
| 61 | A Simple Equation for Regional Climate Change and Associated Uncertainty. Journal of Climate, 2008, 21, 1589-1604.                                                                                                              | 3.2 | 30        |
| 62 | Introduction to the special issue: the phase I CORDEX RegCM4 hyper-matrix (CREMA) experiment.<br>Climatic Change, 2014, 125, 1-5.                                                                                               | 3.6 | 29        |
| 63 | Non-Hydrostatic RegCM4 (RegCM4-NH): model description and case studies over multiple domains.<br>Geoscientific Model Development, 2021, 14, 7705-7723.                                                                          | 3.6 | 29        |
| 64 | Numerical framework and performance of the new multiple-phase cloud microphysics scheme in<br>RegCM4.5: precipitation, cloud microphysics, and cloud radiative effects. Geoscientific Model<br>Development, 2016, 9, 2533-2547. | 3.6 | 28        |
| 65 | 200Âyears of equilibrium-line altitude variability across the European Alps (1901â^2100). Climate Dynamics, 2021, 56, 1183-1201.                                                                                                | 3.8 | 28        |
| 66 | Editorial for the CORDEX-CORE Experiment I Special Issue. Climate Dynamics, 2021, 57, 1265-1268.                                                                                                                                | 3.8 | 27        |
| 67 | Evaluation of the radiation budget with a regional climate model over Europe and inspection of dimming and brightening. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1951-1971.                                   | 3.3 | 25        |
| 68 | Influence of Lake Malawi on regional climate from a double-nested regional climate model experiment.<br>Climate Dynamics, 2018, 50, 3397-3411.                                                                                  | 3.8 | 25        |
| 69 | Climate Change over China in the 21st Century as Simulated by BCC_CSM1.1-RegCM4.0. , 0, .                                                                                                                                       |     | 23        |
| 70 | Future projections of Mediterranean cyclone characteristics using the Med-CORDEX ensemble of coupled regional climate system models. Climate Dynamics, 2022, 58, 2501-2524.                                                     | 3.8 | 22        |
| 71 | The performance of RegCM4 over the Central America and Caribbean region using different cumulus parameterizations. Climate Dynamics, 2018, 50, 4103-4126.                                                                       | 3.8 | 20        |
| 72 | Future projections in the climatology of global low-level jets from CORDEX-CORE simulations.<br>Climate Dynamics, 2021, 57, 1551-1569.                                                                                          | 3.8 | 20        |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Sensitivity of tropical cyclones to resolution, convection scheme and ocean flux parameterization over Eastern Tropical Pacific and Tropical North Atlantic Oceans in the RegCM4 model. Climate Dynamics, 2017, 49, 547-561. | 3.8 | 19        |
| 74 | Assessing changes in the atmospheric water budget as drivers for precipitation change over two CORDEX-CORE domains. Climate Dynamics, 2021, 57, 1615.                                                                        | 3.8 | 18        |
| 75 | Simulation and Projection of Monso on Rainfall and Rain Patterns over Eastern China under Global<br>Warming by RegCM3. Atmospheric and Oceanic Science Letters, 2009, 2, 308-313.                                            | 1.3 | 17        |
| 76 | CORDEX: Climate Research and Information for Regions. Bulletin of the American Meteorological Society, 2017, 98, ES189-ES192.                                                                                                | 3.3 | 17        |
| 77 | Projected changes to severe thunderstorm environments as a result of twenty-first century warming from RegCM CORDEX-CORE simulations. Climate Dynamics, 2021, 57, 1595-1613.                                                 | 3.8 | 15        |
| 78 | Future projections in tropical cyclone activity over multiple CORDEX domains from RegCM4 CORDEX-CORE simulations. Climate Dynamics, 2021, 57, 1507-1531.                                                                     | 3.8 | 14        |
| 79 | Producing actionable climate change information for regions: the distillation paradigm and the 3R framework. European Physical Journal Plus, 2020, 135, 1.                                                                   | 2.6 | 13        |
| 80 | Emergence of robust anthropogenic increase of heat stress-related variables projected from CORDEX-CORE climate simulations. Climate Dynamics, 2021, 57, 1629-1644.                                                           | 3.8 | 13        |
| 81 | Land-Cover Change and the "Dust Bowl―Drought in the U.S. Great Plains. Journal of Climate, 2018, 31,<br>4657-4667.                                                                                                           | 3.2 | 12        |
| 82 | Comparison of GCM and RCM simulated precipitation and temperature over Central America and the Caribbean. Theoretical and Applied Climatology, 2021, 143, 389-402.                                                           | 2.8 | 12        |
| 83 | Future changes in winter explosive cyclones over the Southern Hemisphere domains from the CORDEX-CORE ensemble. Climate Dynamics, 2021, 57, 3303-3322.                                                                       | 3.8 | 12        |
| 84 | Development and validation of a regional coupled atmosphere lake model for the Caspian Sea Basin.<br>Climate Dynamics, 2013, 41, 1731-1748.                                                                                  | 3.8 | 8         |
| 85 | Non-Hydrostatic Regcm4 (Regcm4-NH): Evaluation of Precipitation Statistics at the Convection-Permitting Scale over Different Domains. Atmosphere, 2022, 13, 861.                                                             | 2.3 | 8         |
| 86 | Effects of Climate Change on Soil Erosion Risk Assessed by Clustering and Artificial Neural Network.<br>Pure and Applied Geophysics, 2019, 176, 937-949.                                                                     | 1.9 | 7         |
| 87 | Evaluation of the performance of the non-hydrostatic RegCM4 (RegCM4-NH) over Southeastern China.<br>Climate Dynamics, 2022, 58, 1419-1437.                                                                                   | 3.8 | 7         |
| 88 | Projected changes in precipitation and temperature regimes and extremes over the Caribbean and<br>Central America using a multiparameter ensemble of RegCM4. International Journal of Climatology,<br>2021, 41, 1328-1350.   | 3.5 | 6         |
| 89 | ENSO teleconnections in an ensemble of CORDEX-CORE regional simulations. Climate Dynamics, 2021, 57, 1445-1461.                                                                                                              | 3.8 | 6         |
| 90 | Analysis of Cooling and Heating Degree Days over Mexico in Present and Future Climate. Atmosphere, 2021, 12, 1131.                                                                                                           | 2.3 | 6         |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Caribbean <scp>Low‣evel</scp> Jet future projections using a multiparameter ensemble of<br><scp>RegCM4</scp> configurations. International Journal of Climatology, 2022, 42, 1544-1559.                                          | 3.5 | 5         |
| 92 | Interannual variability of the boreal winter subtropical jet stream and teleconnections over the CORDEX-CAM domain during 1980–2010. Climate Dynamics, 2021, 57, 1571-1594.                                                      | 3.8 | 3         |
| 93 | Use of daily precipitation records to assess the response of extreme events to global warming:<br>Methodology and illustrative application to the European region. International Journal of<br>Climatology, 2022, 42, 7061-7070. | 3.5 | 2         |
| 94 | Appreciation of Peer Reviewers for 2019. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032611.                                                                                                               | 3.3 | 0         |
| 95 | Appreciation of Peer Reviewers for 2020. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034920.                                                                                                               | 3.3 | 0         |