List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4169342/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Type II diabetes mellitus: a review on recent drug based therapeutics. Biomedicine and Pharmacotherapy, 2020, 131, 110708.	2.5	250
2	Development of pH-sensitive tamarind seed polysaccharide–alginate composite beads for controlled diclofenac sodium delivery using response surface methodology. International Journal of Biological Macromolecules, 2011, 49, 784-793.	3.6	221
3	Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharmaceutical Journal, 2012, 20, 355-363.	1.2	200
4	Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids and Surfaces B: Biointerfaces, 2014, 114, 36-44.	2.5	187
5	Calcium alginate/gum Arabic beads containing glibenclamide: Development and in vitro characterization. International Journal of Biological Macromolecules, 2012, 51, 1070-1078.	3.6	174
6	Bactericidal activity of silver nanoparticles: A mechanistic review. Materials Science for Energy Technologies, 2020, 3, 756-769.	1.0	153
7	Fenugreek seed mucilage-alginate mucoadhesive beads of metformin HCI: Design, optimization and evaluation. International Journal of Biological Macromolecules, 2013, 54, 144-154.	3.6	151
8	Novel tamarind seed polysaccharide-alginate mucoadhesive microspheres for oral gliclazide delivery: <i>in vitro–in vivo</i> evaluation. Drug Delivery, 2012, 19, 123-131.	2.5	136
9	Aceclofenac-loaded chitosan-tamarind seed polysaccharide interpenetrating polymeric network microparticles. Colloids and Surfaces B: Biointerfaces, 2013, 105, 303-309.	2.5	133
10	Purple heart plant leaves extract-mediated silver nanoparticle synthesis: Optimization by Box-Behnken design. Materials Science and Engineering C, 2019, 99, 1105-1114.	3.8	124
11	Development of cloxacillin loaded multiple-unit alginate-based floating system by emulsion–gelation method. International Journal of Biological Macromolecules, 2012, 50, 138-147.	3.6	111
12	Aceclofenac-loaded unsaturated esterified alginate/gellan gum microspheres: In vitro and in vivo assessment. International Journal of Biological Macromolecules, 2013, 57, 129-137.	3.6	111
13	Tamarind seed polysaccharide–gellan mucoadhesive beads for controlled release of metformin HCl. Carbohydrate Polymers, 2014, 103, 154-163.	5.1	111
14	Okra (Hibiscus esculentus) gum-alginate blend mucoadhesive beads for controlled glibenclamide release. International Journal of Biological Macromolecules, 2015, 72, 1069-1075.	3.6	111
15	Development, Optimization, and Anti-diabetic Activity of Gliclazide-Loaded Alginate–Methyl Cellulose Mucoadhesive Microcapsules. AAPS PharmSciTech, 2011, 12, 1431-1441.	1.5	110
16	Calcium pectinate-fenugreek seed mucilage mucoadhesive beads for controlled delivery of metformin HCl. Carbohydrate Polymers, 2013, 96, 349-357.	5.1	110
17	Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery. Carbohydrate Polymers, 2013, 98, 870-876.	5.1	110
18	Alginate-okra gum blend beads of diclofenac sodium from aqueous template using ZnSO4 as a cross-linker. International Journal of Biological Macromolecules, 2015, 79, 555-563.	3.6	108

#	Article	IF	CITATIONS
19	Swelling and drug release behavior of metformin HCl-loaded tamarind seed polysaccharide-alginate beads. International Journal of Biological Macromolecules, 2016, 82, 1023-1027.	3.6	107
20	Alginate–sterculia gum gel-coated oil-entrapped alginate beads for gastroretentive risperidone delivery. Carbohydrate Polymers, 2015, 120, 74-84.	5.1	105
21	Zinc alginate-carboxymethyl cashew gum microbeads for prolonged drug release: Development and optimization. International Journal of Biological Macromolecules, 2014, 70, 506-515.	3.6	101
22	Formulation optimization and evaluation of jackfruit seed starch–alginate mucoadhesive beads of metformin HCl. International Journal of Biological Macromolecules, 2013, 59, 264-272.	3.6	99
23	Mucoadhesive-floating zinc-pectinate–sterculia gum interpenetrating polymer network beads encapsulating ziprasidone HCl. Carbohydrate Polymers, 2015, 131, 108-118.	5.1	97
24	Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. Journal of Drug Delivery Science and Technology, 2018, 48, 21-29.	1.4	96
25	Topical gels of lidocaine HCl using cashew gum and Carbopol 940: Preparation and in vitro skin permeation. International Journal of Biological Macromolecules, 2013, 62, 514-517.	3.6	95
26	Development of calcium pectinate-tamarind seed polysaccharide mucoadhesive beads containing metformin HCl. Carbohydrate Polymers, 2014, 101, 220-230.	5.1	94
27	Screening of polysaccharides from tamarind, fenugreek and jackfruit seeds as pharmaceutical excipients. International Journal of Biological Macromolecules, 2015, 79, 756-760.	3.6	94
28	Ispaghula mucilage-gellan mucoadhesive beads of metformin HCI: Development by response surface methodology. Carbohydrate Polymers, 2014, 107, 41-50.	5.1	91
29	Transferosomal gel for transdermal delivery of risperidone: Formulation optimization and exÂvivo permeation. Journal of Drug Delivery Science and Technology, 2017, 38, 59-71.	1.4	88
30	Alginate-based bipolymeric-nanobioceramic composite matrices for sustained drug release. International Journal of Biological Macromolecules, 2016, 83, 71-77.	3.6	86
31	Formulation and statistical optimization of multiple-unit ibuprofen-loaded buoyant system using 23-factorial design. Chemical Engineering Research and Design, 2012, 90, 1834-1846.	2.7	85
32	Alginate gel-coated oil-entrapped alginate–tamarind gum–magnesium stearate buoyant beads of risperidone. International Journal of Biological Macromolecules, 2015, 78, 102-111.	3.6	84
33	Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation. Journal of Drug Delivery Science and Technology, 2019, 52, 303-315.	1.4	83
34	Oil-entrapped sterculia gum–alginate buoyant systems of aceclofenac: Development and in vitro evaluation. Colloids and Surfaces B: Biointerfaces, 2013, 104, 268-275.	2.5	82
35	Isolation and characterization of Linum usitatisimum polysaccharide to prepare mucoadhesive beads of diclofenac sodium. International Journal of Biological Macromolecules, 2018, 116, 162-172.	3.6	81
36	Trigonella foenum-graecum L. seed mucilage-gellan mucoadhesive beads for controlled release of metformin HCl. Carbohydrate Polymers, 2014, 107, 31-40.	5.1	80

#	Article	IF	CITATIONS
37	Chitosan-Hydroxypropyl Methylcellulose Matrices as Carriers for Hydrodynamically Balanced Capsules of Moxifloxacin HCl. Current Drug Delivery, 2017, 14, 83-90.	0.8	80
38	Evaluation of Spinacia oleracea L. leaves mucilage as an innovative suspending agent. Journal of Advanced Pharmaceutical Technology and Research, 2010, 1, 338.	0.5	75
39	Blends of jackfruit seed starch–pectin in the development of mucoadhesive beads containing metformin HCl. International Journal of Biological Macromolecules, 2013, 62, 137-145.	3.6	74
40	Modified starch (cationized)–alginate beads containing aceclofenac: Formulation optimization using central composite design. Starch/Staerke, 2013, 65, 603-612.	1.1	74
41	Title is missing!. ScienceAsia, 2010, 36, 319.	0.2	74
42	Development, Optimization and in vitro-in vivo Evaluation of Pioglitazone- Loaded Jackfruit Seed Starch-Alginate Beads. Current Drug Delivery, 2013, 10, 608-619.	0.8	70
43	Development of pectinate-ispagula mucilage mucoadhesive beads of metformin HCl by central composite design. International Journal of Biological Macromolecules, 2014, 66, 203-211.	3.6	69
44	Artocarpus heterophyllus L. seed starch-blended gellan gum mucoadhesive beads of metformin HCl. International Journal of Biological Macromolecules, 2014, 65, 329-339.	3.6	69
45	Global impacts of pre- and post-COVID-19 pandemic: Focus on socio-economic consequences. Sensors International, 2020, 1, 100042.	4.9	69
46	Formulation and Evaluation of Buccal Patches for Delivery of Atenolol. AAPS PharmSciTech, 2010, 11, 1038-1044.	1.5	67
47	Development of hydroxyapatite-ciprofloxacin bone-implants using »Quality by design«. Acta Pharmaceutica, 2011, 61, 25-36.	0.9	67
48	Optimization of aceclofenac-loaded pectinate-poly(vinyl pyrrolidone) beads by response surface methodology. International Journal of Biological Macromolecules, 2013, 62, 194-202.	3.6	65
49	Tamarind Seed Polysaccharide: An Emerging Excipient for Pharmaceutical Use. Indian Journal of Pharmaceutical Education and Research, 2017, 51, s136-s146.	0.3	64
50	Development, optimization, and evaluation of emulsionâ€gelled floating beads using natural polysaccharideâ€blend for controlled drug release. Polymer Engineering and Science, 2013, 53, 238-250.	1.5	60
51	Aceclofenac‣oaded <i>Plantago ovata</i> F. Husk Mucilageâ€Zn ⁺² â€Pectinate Controlledâ€Release Matrices. Starch/Staerke, 2018, 70, 1700136.	1.1	60
52	Potato starch-blended alginate beads for prolonged release of tolbutamide: Development by statistical optimization and in vitro characterization. Asian Journal of Pharmaceutics (discontinued), 2013, 7, 43.	0.4	59
53	Extraction and characterization of cashew tree (Anacardium occidentale) gum; use in aceclofenac dental pastes. International Journal of Biological Macromolecules, 2018, 116, 1074-1081.	3.6	58
54	Molecular insights and novel approaches for targeting tumor metastasis. International Journal of Pharmaceutics, 2020, 585, 119556.	2.6	55

#	Article	IF	CITATIONS
55	Pharmacokinetic evaluation of testosterone-loaded nanocapsules in rats. International Journal of Biological Macromolecules, 2015, 72, 28-30.	3.6	52
56	Floating capsules containing alginate-based beads of salbutamol sulfate: In vitro–in vivo evaluations. International Journal of Biological Macromolecules, 2014, 64, 181-189.	3.6	51
57	Development of topical gel containing aceclofenac-crospovidone solid dispersion by "Quality by Design (QbD)―approach. Chemical Engineering Research and Design, 2014, 92, 2095-2105.	2.7	49
58	QbD-driven formulation development and evaluation of topical hydrogel containing ketoconazole loaded cubosomes. Materials Science and Engineering C, 2021, 119, 111548.	3.8	49
59	Novel alginate hydrogel core–shell systems for combination delivery of ranitidine HCl and aceclofenac. International Journal of Biological Macromolecules, 2015, 74, 85-92.	3.6	47
60	Development and Evaluation of Microemulsions for Transdermal Delivery of Insulin. ISRN Pharmaceutics, 2011, 2011, 1-7.	1.0	40
61	Soluble starch-blended Ca 2+ -Zn 2+ -alginate composites-based microparticles of aceclofenac: Formulation development and inÂvitro characterization. Future Journal of Pharmaceutical Sciences, 2018, 4, 63-70.	1.1	40
62	Development and Optimization of Hydroxyapatite-Ofloxacin Implants for Possible Bone Delivery in Osteomyelitis Treatment. Current Drug Delivery, 2013, 10, 241-250.	0.8	39
63	Applications of biomass-derived materials for energy production, conversion, and storage. Materials Science for Energy Technologies, 2020, 3, 905-920.	1.0	36
64	Development and optimization of besifloxacin hydrochloride loaded liposomal gel prepared by thin film hydration method using 32 full factorial design. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 124071.	2.3	35
65	Development of lamivudine containing multiple emulsions stabilized by gum odina. Future Journal of Pharmaceutical Sciences, 2018, 4, 71-79.	1.1	34
66	Sterculia Gum-Based Hydrogels for Drug Delivery Applications. Springer Series on Polymer and Composite Materials, 2016, , 105-151.	0.5	33
67	Gastroretentive hydrodynamically balanced systems of ofloxacin: In vitro evaluation. Saudi Pharmaceutical Journal, 2013, 21, 113-117.	1.2	32
68	Carbon Nanotubes: An Emerging Drug Delivery Carrier in Cancer Therapeutics. Current Drug Delivery, 2020, 17, 558-576.	0.8	31
69	Antioxidant potential of herbal polysaccharides: An overview on recent researches. Sensors International, 2022, 3, 100158.	4.9	31
70	Formulation and ex vivo skin permeation of lidocaine HCl topical gels using dillenia (Dillenia indica L.) fruit gum. Revista Mexicana De Ingeniera Quimica, 2020, 19, 1465-1476.	0.2	30
71	Candesartan Cilexetil Microemulsions for Transdermal Delivery: Formulation, in-vitro Skin Permeation and Stability Assessment. Current Drug Delivery, 2014, 11, 313-321.	0.8	29

72 Gellan gum in drug delivery applications. , 2019, , 145-186.

#	Article	IF	CITATIONS
73	Atenolol-releasing buccal patches made of Dillenia indica L. fruit gum: preparation and ex vivo evaluations. SN Applied Sciences, 2020, 2, 1.	1.5	28
74	Alginate-based hydrogel systems for drug releasing in wound healing. , 2020, , 323-358.		27
75	Hydroxyapatite-alginate Based Matrices for Drug Delivery. Current Pharmaceutical Design, 2019, 25, 3406-3416.	0.9	27
76	Ethyl Cellulose Microparticles Containing Metformin HCl by Emulsification-Solvent Evaporation Technique: Effect of Formulation Variables. ISRN Polymer Science, 2012, 2012, 1-7.	0.3	26
77	Alginate nanoparticles in drug delivery. , 2020, , 129-152.		25
78	<i>In Vivo</i> Ciprofloxacin Release from Hydroxyapatite-Based Bone Implants in Rabbit Tibia: A Preliminary Study. ISRN Orthopedics, 2011, 2011, 1-4.	0.7	24
79	Use of Response Surface Methodology in the Formulation and Optimization of Bisoprolol Fumarate Matrix Tablets for Sustained Drug Release. ISRN Pharmaceutics, 2012, 2012, 1-10.	1.0	23
80	Preparation and evaluation of aceclofenac dental pastes using dillenia fruit gum for periodontitis treatment. SN Applied Sciences, 2020, 2, 1.	1.5	23
81	Natural polysaccharides in tissue engineering applications. , 2019, , 531-548.		22
82	Biodegradable polymer matrix nanocomposites for bone tissue engineering. , 2019, , 1-37.		22
83	Functionalization of Tamarind Gum for Drug Delivery. Springer Series on Polymer and Composite Materials, 2018, , 25-56.	0.5	21
84	Stability indicating liquid chromatographic method for simultaneous quantification of betamethasone valerate and tazarotene in in vitro and ex vivo studies of complex nanoformulation. Journal of Separation Science, 2019, 42, 3413-3420.	1.3	21
85	Drug delivery using interpenetrating polymeric networks of natural polymers: A recent update. Journal of Drug Delivery Science and Technology, 2021, 66, 102915.	1.4	20
86	Approaches for prevention and environmental management of novel COVID-19. Environmental Science and Pollution Research, 2021, 28, 40311-40321.	2.7	19
87	Antimicrobial activity assessment of time-dependent release bilayer tablets of amoxicillin trihydrate. Brazilian Journal of Pharmaceutical Sciences, 2012, 48, 265-272.	1.2	18
88	Alginates, Blends and Microspheres: Controlled Drug Delivery. , 0, , 89-98.		18
89	Use of alginates for drug delivery in dentistry. , 2020, , 387-404.		18

90 Chitosan as responsive polymer for drug delivery applications. , 2018, , 581-605.

17

#	Article	IF	CITATIONS
91	Stimuli-responsive carbon nanotubes for targeted drug delivery. , 2019, , 321-344.		17
92	Alginates as drug delivery excipients. , 2020, , 19-39.		17
93	Title is missing!. ScienceAsia, 2011, 37, 72.	0.2	17
94	MODIFICATION OF GUMS BY PERIODATE OXIDATION: A NATURAL CROSS-LINKER. International Journal of Pharmacy and Pharmaceutical Sciences, 0, , 1-6.	0.3	16
95	Cellulose-Based Hydrogels: Present and Future. , 2019, , 285-332.		16
96	Plantago ovata F. Mucilage-Alginate Mucoadhesive Beads for Controlled Release of Glibenclamide: Development, Optimization, and In Vitro-In Vivo Evaluation. Journal of Pharmaceutics, 2013, 2013, 1-11.	4.6	15
97	Plant Polysaccharides in Drug Delivery Applications. SpringerBriefs in Applied Sciences and Technology, 2019, , 19-23.	0.2	15
98	Nanocomposites for improved orthopedic and bone tissue engineering applications. , 2019, , 145-177.		15
99	Alginates: sources, structure, and properties. , 2020, , 1-17.		15
100	Development and Validation of QbD-Driven Bioanalytical LC-MS/MS Method for the Quantification of Paracetamol and Diclofenac in Human Plasma. Analytical Chemistry Letters, 2018, 8, 677-691.	0.4	14
101	Polyelectrolyte complexes of alginate for controlling drug release. , 2020, , 297-321.		14
102	Synthesis and Characterization of Graft Copolymers of Plant Polysaccharides. , 2018, , 1-62.		13
103	Application of Quality by Design for the Development of Biopharmaceuticals. , 2019, , 399-411.		13
104	Hydroxyapatite composites for dentistry. , 2019, , 123-143.		13
105	Gum-based hydrogels in drug delivery. , 2020, , 605-645.		13
106	Tamarind gum in drug delivery applications. , 2019, , 285-306.		12
107	Ondansetron HCl Microemulsions for Transdermal Delivery: Formulation and In Vitro Skin Permeation. ISRN Pharmaceutics, 2012, 2012, 1-6.	1.0	11

#	Article	IF	CITATIONS
109	Sterculia Gum Based Multiple Units for Oral Drug Delivery. SpringerBriefs in Applied Sciences and Technology, 2019, , 67-82.	0.2	11
110	Potato Starch Based Multiple Units for Oral Drug Delivery. SpringerBriefs in Applied Sciences and Technology, 2019, , 113-116.	0.2	11
111	Plant-Derived Polymers: Ionically Gelled Sustained Drug Release Systems. , 0, , 6002-6017.		10
112	Carbon Nanotubes for Targeted Drug Delivery. SpringerBriefs in Applied Sciences and Technology, 2019, , .	0.2	10
113	Some Other Plant Polysaccharide Based Multiple Units for Oral Drug Delivery. SpringerBriefs in Applied Sciences and Technology, 2019, , 123-128.	0.2	10
114	Tamarind Polysaccharide Based Multiple Units for Oral Drug Delivery. SpringerBriefs in Applied Sciences and Technology, 2019, , 31-59.	0.2	10
115	Nanocomposite materials for prosthetic devices. , 2019, , 127-144.		10
116	Alginate-based hydrogels for drug delivery applications. , 2020, , 41-70.		10
117	Design and release kinetics of liposomes containing abiraterone acetate for treatment of prostate cancer. Sensors International, 2021, 2, 100077.	4.9	10
118	Preparation and characterization of vetiver oil encapsulated polymeric microcapsules for sedative and hypnotic activity. International Journal of Research in Pharmaceutical Sciences, 2019, 10, 3616-3625.	0.0	10
119	Sterculia gum in drug delivery applications. , 2019, , 223-247.		9
120	Fenugreek Seed Mucilage Based Multiple Units for Oral Drug Delivery. SpringerBriefs in Applied Sciences and Technology, 2019, , 93-112.	0.2	9
121	Gum Arabic Based Multiple Units for Oral Drug Delivery. SpringerBriefs in Applied Sciences and Technology, 2019, , 25-30.	0.2	9
122	Okra Gum Based Multiple Units for Oral Drug Delivery. SpringerBriefs in Applied Sciences and Technology, 2019, , 83-92.	0.2	9
123	Ionotropically gelled alginate particles in sustained drug release. , 2020, , 203-230.		9
124	Curdlan-based nanomaterials in drug delivery applications. , 2021, , 253-273.		9
125	Interpenetrating Polymer Networks (IPNs): Natural Polymeric Blends for Drug Delivery. , 0, , 4120-4130.		9
126	Biological macromolecules in drug delivery. , 2022, , 339-379.		9

6

#	ARTICLE	IF	CITATIONS
127	Gelled Microparticles/Beads of Sterculia Gum and Tamarind Gum for Sustained Drug Release. Gels Horizons: From Science To Smart Materials, 2018, , 361-414.	0.3	8
128	Natural polysaccharides. , 2019, , 1-14.		8
129	Alginate-based scaffolds for drug delivery in tissue engineering. , 2020, , 359-386.		8
130	Natural polymers as useful pharmaceutical excipients. , 2021, , 1-44.		8
131	Chitosan: source, chemistry, and properties. , 2022, , 1-22.		8
132	Preparation and Evaluation of Silymarin-Loaded Solid Eutectic for Enhanced Anti-Inflammatory, Hepatoprotective Effect: In Vitro–In Vivo Prospect. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-13.	1.9	8
133	Gum odina as pharmaceutical excipient. , 2019, , 327-337.		7
134	Biopolymers-based gastroretentive buoyant systems for therapeutic management of Helicobacter pylori infection. , 2019, , 713-736.		7
135	Plant Polysaccharides-Based Multiple-Unit Systems for Oral Drug Delivery. SpringerBriefs in Applied Sciences and Technology, 2019, , .	0.2	7
136	Calcium fluoride-based dental nanocomposites. , 2019, , 27-45.		7
137	Alginate-based interpenetrating polymer networks for sustained drug release. , 2020, , 101-128.		7
138	Gum arabic-based nanomaterials in drug delivery and biomedical applications. , 2021, , 165-182.		7
139	Artificial Intelligence in Pharmacy. Indian Journal of Pharmaceutical Education and Research, 2021, 55, 304-318.	0.3	7
140	Classification of Carbon Nanotubes. SpringerBriefs in Applied Sciences and Technology, 2019, , 11-15.	0.2	7
141	Marine-Derived Polysaccharides: Pharmaceutical Applications. , 2019, , 1-36.		7
142	Plant Polysaccharides in Pharmaceutical Applications. Advanced Structured Materials, 2021, , 93-125.	0.3	7
143	Recent progress in responsive polymer-based drug delivery systems. , 2019, , 569-595.		6

144 In situ polysaccharide-based gels for topical drug delivery applications. , 2019, , 615-638.

#	Article	IF	CITATIONS
145	Biocomposites of Alginates in Drug Delivery. , 2020, , 153-185.		6
146	A scientometric review of hydrogel-based ocular drug delivery systems. , 2021, , 517-537.		6
147	Carbon Nanotubes in Vaccine Delivery. SpringerBriefs in Applied Sciences and Technology, 2019, , 69-73.	0.2	6
148	Applications of Carbon Nanotubes. SpringerBriefs in Applied Sciences and Technology, 2019, , 33-36.	0.2	6
149	Bone-implantable devices for drug delivery applications. , 2019, , 355-392.		5
150	Iontophoretic drug delivery systems. , 2019, , 393-420.		5
151	Degradation and failure of dental composite materials. , 2019, , 107-121.		5
152	Grafted alginates in drug delivery. , 2020, , 71-100.		5
153	Alginate–montmorillonite composite systems as sustained drug delivery carriers. , 2020, , 187-201.		5
154	Inorganic materials–alginate composites in drug delivery. , 2020, , 231-256.		5
155	Gellan gum-based nanomaterials in drug delivery applications. , 2021, , 313-336.		5
156	Carbon NanotubesÂas Quantum Dots for Therapeutic Purpose. SpringerBriefs in Applied Sciences and Technology, 2019, , 59-64.	0.2	5
157	Hydroxyapatite-Alginate Composites in Drug Delivery. , 2019, , 483-504.		5
158	Effect of hydrophilic polymer on solubility and taste masking of linezolid in multi-component cyclodextrin inclusion complex: Physicochemical characterization and molecular docking. Journal of Drug Delivery Science and Technology, 2021, 66, 102876.	1.4	5
159	Chitosan-based nanoparticles in drug delivery. , 2022, , 55-82.		5
160	Chitosan as a responsive biopolymer in drug delivery. , 2022, , 389-410.		5
161	Gellan gum (GG)-based IPN microbeads for sustained drug release. Journal of Drug Delivery Science and Technology, 2022, 69, 103034.	1.4	5
162	Interpenetrating Polymer Network Hydrogels of Chitosan: Applications in Controlling Drug Release. Polymers and Polymeric Composites, 2018, , 1-41.	0.6	4

#	Article	IF	CITATIONS
163	Background: Multiple Units in Oral Drug Delivery. SpringerBriefs in Applied Sciences and Technology, 2019, , 1-17.	0.2	4
164	â€~Quality by Design' Approach for Development of Multiparticulate Drug Delivery Systems. , 2019, , 351-365.		4
165	Interpenetrating Polymer Network Hydrogels of Chitosan: Applications in Controlling Drug Release. Polymers and Polymeric Composites, 2019, , 1727-1767.	0.6	4
166	Biopolymers for Drug Delivery. Advances in Material Research and Technology, 2020, , 1-29.	0.3	4
167	Particulate matrices of ionotropically gelled alginate- and plant-derived starches for sustained drug release. , 2020, , 257-295.		4
168	Crystal Growth and Kinetic Behaviour of Pseudoalteromonas espejiana Assisted Biosynthesized Gold Nanoparticles. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-12.	1.9	4
169	Background: Carbon Nanotubes for Targeted Drug Delivery. SpringerBriefs in Applied Sciences and Technology, 2019, , 1-9.	0.2	4
170	Carbon Nanotubes in Gene Delivery. SpringerBriefs in Applied Sciences and Technology, 2019, , 75-87.	0.2	4
171	Functionalization of Carbon Nanotubes. SpringerBriefs in Applied Sciences and Technology, 2019, , 21-28.	0.2	4
172	Targeted Delivery with Carbon Nanotubes. SpringerBriefs in Applied Sciences and Technology, 2019, , 37-50.	0.2	4
173	Pharmaceutical Applications of Tamarind Gum. , 2019, , 1-20.		4
174	Pharmaceutical Applications of Locust Bean Gum. , 2019, , 139-162.		4
175	Hyaluronic Acid (Hyaluronan): Pharmaceutical Applications. , 2019, , 1-32.		4
176	Chitosan-based drug delivery systems in cancer therapeutics. , 2022, , 159-193.		4
177	Chitosan-based scaffolds in tissue engineering and regenerative medicine. , 2022, , 329-354.		4
178	Chitosan nanocomposites for biomedical applications. , 2022, , 111-138.		4
179	Dental pulp capping nanocomposites. , 2019, , 65-91.		3
180	Regulatory Considerations of Carbon Nanotubes. SpringerBriefs in Applied Sciences and Technology, 2019, , 103-106.	0.2	3

1

#	Article	IF	CITATIONS
181	Pharmaceutical Applications of Alginates. , 2019, , 37-70.		3
182	Graft copolymers of chitosan in drug delivery applications. , 2022, , 301-322.		3
183	Chitosan-based nanobiocomposites in drug delivery. , 2022, , 411-432.		3
184	Biological macromolecules: sources, properties, and functions. , 2022, , 3-22.		3
185	Polysaccharide-based polymeric gels as drug delivery vehicles. , 2021, , 283-325.		2
186	Biomedical Nanocomposites. Materials Horizons, 2021, , 35-69.	0.3	2
187	Absorption and Transportation of Carbon Nanotubes. SpringerBriefs in Applied Sciences and Technology, 2019, , 65-68.	0.2	2
188	Synthesis of Carbon Nanotubes. SpringerBriefs in Applied Sciences and Technology, 2019, , 17-20.	0.2	2
189	Pharmaceutical Applications of Fenugreek Seed Gum. , 2019, , 203-226.		2
190	In silico molecular docking of Vetiver oil and formulation of Vetiver oil-Encapsulated gellan gum-based Microcapsules for Antidepressant activity. Research Journal of Pharmacy and Technology, 2020, 13, 3135.	0.2	2
191	Biomedical applications of polysaccharides. , 2020, , 1-34.		2
192	Polysaccharide-based polyelectrolyte complex systems for biomedical uses. , 2020, , 151-174.		2
193	Cross-linking of chitosan in drug delivery. , 2022, , 277-299.		2
194	Herbal biopolysaccharides in drug delivery. , 2022, , 613-642.		2
195	Uses of tailored polysaccharides in dentistry. , 2020, , 287-304.		2
196	Antimicrobial uses of chitosan. , 2022, , 13-36.		2
197	Process analytical technology (PAT) tools: Uses in pharmaceutical manufacturing. , 2021, , 243-259.		1

198 Hydroxyapatite-based composites for orthopedic drug delivery and tissue engineering. , 2021, , 293-320.

#	Article	IF	CITATIONS
199	Jackfruit Seed Starch-Based Composite Beads for Controlled Drug Release. Advances in Material Research and Technology, 2022, , 213-240.	0.3	1
200	Toxicity Consideration ofÂCarbon Nanotubes. SpringerBriefs in Applied Sciences and Technology, 2019, , 89-101.	0.2	1
201	Characterization of Carbon Nanotubes. SpringerBriefs in Applied Sciences and Technology, 2019, , 29-31.	0.2	1
202	CNTs in Solubility Enhancement. SpringerBriefs in Applied Sciences and Technology, 2019, , 55-57.	0.2	1
203	Pharmaceutical Applications of Chondroitin. , 2019, , 117-131.		1
204	Introduction to herbal biomolecules. , 2022, , 1-19.		1
205	Chitosan as mucoadhesive polymer in drug delivery. , 2022, , 225-246.		1
206	Chitosan-based hydrogels in drug delivery. , 2022, , 361-387.		1
207	Chitosan in colon-targeted drug delivery. , 2022, , 107-132.		1
208	Tumor targeting strategies by chitosan-based nanocarriers. , 2022, , 163-188.		1
209	Chitosan. , 2022, , 1-11.		1
210	In situ cross-linked matrix tablets for sustained salbutamol sulfate release - formulation development by statistical optimization. Polimery W Medycynie, 2014, 44, 221-30.	0.6	1
211	Ionically Gelled Pectinates in Drug Delivery. Gels Horizons: From Science To Smart Materials, 2021, , 1-28.	0.3	Ο
212	Preparation and evaluation of solid self-microemulsifying drug delivery system of eprosartan mesylate using vegetable oils. Journal of Drug Delivery Science and Technology, 2021, 66, 102771.	1.4	0
213	The Assessment of Mucoadhesivity of Natural Polymer Derived Form Plant Sources. Journal of Drug Delivery and Therapeutics, 2020, 10, 27-29.	0.2	Ο
214	Borderline microscopic organism and lockdown impacted across the borders—global shakers. Environmental Science and Pollution Research, 2021, , 1.	2.7	0
215	Uses of chitosan in drug delivery. , 2022, , 139-162.		0
216	Design and evaluation of dental pastes Containing anti-inflammatory drugs. Brazilian Journal of Pharmaceutical Sciences, 0, 58, .	1.2	0