
Heng-Guo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4169149/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrogenâ€Doped Porous Carbon Nanosheets as Lowâ€Cost, Highâ€Performance Anode Material for Sodiumâ€Ion Batteries. ChemSusChem, 2013, 6, 56-60.	3.6	593
2	Engraving Copper Foil to Give Largeâ€6cale Binderâ€Free Porous CuO Arrays for a Highâ€Performance Sodiumâ€Ion Battery Anode. Advanced Materials, 2014, 26, 2273-2279.	11.1	427
3	<i>In Situ</i> Fabrication of Porous Graphene Electrodes for High-Performance Energy Storage. ACS Nano, 2013, 7, 2422-2430.	7.3	394
4	Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance. Energy and Environmental Science, 2015, 8, 1660-1681.	15.6	362
5	Homogeneous CoO on Graphene for Binderâ€Free and Ultralongâ€Life Lithium Ion Batteries. Advanced Functional Materials, 2013, 23, 4345-4353.	7.8	333
6	A Biodegradable Polydopamineâ€Derived Electrode Material for Highâ€Capacity and Longâ€Life Lithiumâ€Ion and Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 10662-10666.	7.2	325
7	Tailored Aromatic Carbonyl Derivative Polyimides for Highâ€Power and Long ycle Sodiumâ€Organic Batteries. Advanced Energy Materials, 2014, 4, 1301651.	10.2	319
8	Electrostatic Induced Stretch Growth of Homogeneous β-Ni(OH)2 on Graphene with Enhanced High-Rate Cycling for Supercapacitors. Scientific Reports, 2014, 4, 3669.	1.6	222
9	Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries. Energy and Environmental Science, 2012, 5, 8538.	15.6	213
10	General and Controllable Synthesis Strategy of Metal Oxide/TiO2 Hierarchical Heterostructures with Improved Lithium-Ion Battery Performance. Scientific Reports, 2012, 2, 701.	1.6	195
11	Flexible Electrodes for Sodiumâ€ion Batteries: Recent Progress and Perspectives. Advanced Materials, 2017, 29, 1703012.	11.1	156
12	Multi-ring aromatic carbonyl compounds enabling high capacity and stable performance of sodium-organic batteries. Energy and Environmental Science, 2015, 8, 3160-3165.	15.6	155
13	Electrospun V ₂ O ₅ Nanostructures with Controllable Morphology as Highâ€Performance Cathode Materials for Lithiumâ€lon Batteries. Chemistry - A European Journal, 2012, 18, 8987-8993.	1.7	153
14	Optimal electromagnetic-wave absorption by enhanced dipole polarization in Ni/C nanocapsules. Applied Physics Letters, 2012, 101, 083116.	1.5	141
15	A Biodegradable Polydopamineâ€Derived Electrode Material for Highâ€Capacity and Longâ€Life Lithiumâ€Ion and Sodiumâ€Ion Batteries. Angewandte Chemie, 2016, 128, 10820-10824.	1.6	131
16	Molecular Engineering of Monodisperse SnO ₂ Nanocrystals Anchored on Doped Graphene with Highâ€Performance Lithium/Sodium‣torage Properties in Half/Full Cells. Advanced Energy Materials, 2019, 9, 1802993.	10.2	129
17	Recent progress in conjugated microporous polymers for clean energy: Synthesis, modification, computer simulations, and applications. Progress in Polymer Science, 2021, 115, 101374.	11.8	117
18	Exceptional electrochemical performance of nitrogen-doped porous carbon for lithium storage. Carbon, 2015, 82, 116-123.	5.4	102

#	Article	IF	CITATIONS
19	Positive temperature coefficient thermistors based on carbon nanotube/polymer composites. Scientific Reports, 2014, 4, 6684.	1.6	89
20	Dual Carbon-Confined SnO ₂ Hollow Nanospheres Enabling High Performance for the Reversible Storage of Alkali Metal Ions. ACS Applied Materials & Interfaces, 2018, 10, 15642-15651.	4.0	87
21	Fabrication, formation mechanism and the application in lithium-ion battery of porous Fe2O3 nanotubes via single-spinneret electrospinning. Electrochimica Acta, 2015, 158, 105-112.	2.6	79
22	A Bipolar and Selfâ€Polymerized Phthalocyanine Complex for Fast and Tunable Energy Storage in Dualâ€Ion Batteries. Angewandte Chemie - International Edition, 2019, 58, 10204-10208.	7.2	78
23	In Situ Coupling Strategy for Anchoring Monodisperse Co9S8 Nanoparticles on S and N Dual-Doped Graphene as a Bifunctional Electrocatalyst for Rechargeable Zn–Air Battery. Nano-Micro Letters, 2019, 11, 4.	14.4	74
24	Organic Carbonyl Compounds for Sodiumâ€lon Batteries: Recent Progress and Future Perspectives. Chemistry - A European Journal, 2018, 24, 18235-18245.	1.7	65
25	Conjugated Carbonyl Polymer-Based Flexible Cathode for Superior Lithium-Organic Batteries. ACS Applied Materials & Interfaces, 2019, 11, 28801-28808.	4.0	64
26	Nanoengineered Ultralight Organic Cathode Based on Aromatic Carbonyl Compound/Graphene Aerogel for Green Lithium and Sodium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 8392-8399.	3.2	63
27	Metallophthalocyanine-Based Polymer-Derived Co ₂ P Nanoparticles Anchoring on Doped Graphene as High-Efficient Trifunctional Electrocatalyst for Zn-Air Batteries and Water Splitting. ACS Sustainable Chemistry and Engineering, 2020, 8, 6422-6432.	3.2	63
28	Recent developments in electrode materials for dual-ion batteries: Potential alternatives to conventional batteries. Materials Today, 2022, 52, 269-298.	8.3	60
29	Second Time-Scale Synthesis of High-Quality Graphite Films by Quenching for Effective Electromagnetic Interference Shielding. ACS Nano, 2020, 14, 3121-3128.	7.3	57
30	Facile synthesis of Co3O4-CeO2 composite oxide nanotubes and their multifunctional applications for lithium ion batteries and CO oxidation. Journal of Colloid and Interface Science, 2017, 494, 274-281.	5.0	53
31	Complexing agent engineered strategy for anchoring SnO2 nanoparticles on sulfur/nitrogen co-doped graphene for superior lithium and sodium ion storage. Chemical Engineering Journal, 2018, 332, 237-244.	6.6	53
32	Free-standing and flexible organic cathode based on aromatic carbonyl compound/carbon nanotube composite for lithium and sodium organic batteries. Journal of Colloid and Interface Science, 2018, 517, 72-79.	5.0	51
33	Nitrogen doped carbon nanofiber derived from polypyrrole functionalized polyacrylonitrile for applications in lithium-ion batteries and oxygen reduction reaction. Journal of Colloid and Interface Science, 2017, 507, 154-161.	5.0	47
34	A bipolar metal phthalocyanine complex for sodium dual-ion battery. Journal of Energy Chemistry, 2021, 58, 9-16.	7.1	47
35	Self-sacrifice template formation of nitrogen-doped porous carbon microtubes towards high performance anode materials in lithium ion batteries. Chemical Engineering Journal, 2017, 316, 1004-1010.	6.6	46
36	Synthesis of zincphthalocyanine-based conjugated microporous polymers with rigid-linker as novel and green heterogeneous photocatalysts. Journal of Hazardous Materials, 2018, 348, 47-55.	6.5	46

#	Article	IF	CITATIONS
37	Nitrogen and sulfur dual-doped graphene sheets as anode materials with superior cycling stability for lithium-ion batteries. Electrochimica Acta, 2015, 184, 24-31.	2.6	45
38	N, P, S tri-doped hollow carbon nanosphere as a high-efficient bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Applied Surface Science, 2019, 490, 47-55.	3.1	44
39	Multi-heteroatom-doped dual carbon-confined Fe3O4 nanospheres as high-capacity and long-life anode materials for lithium/sodium ion batteries. Journal of Colloid and Interface Science, 2020, 565, 494-502.	5.0	44
40	Embedding Co2P nanoparticles into co-doped carbon hollow polyhedron as a bifunctional electrocatalyst for efficient overall water splitting. International Journal of Hydrogen Energy, 2020, 45, 16540-16549.	3.8	44
41	Flower-like dynamics of coupled Skyrmions with dual resonant modes by a single-frequency microwave magnetic field. Scientific Reports, 2014, 4, 6153.	1.6	43
42	Co nanoparticles encapsulated in N-doped carbon nanofibers as bifunctional catalysts for rechargeable Zn-air battery. Applied Surface Science, 2019, 478, 560-566.	3.1	41
43	A Selfâ€Polymerized Nitroâ€Substituted Conjugated Carbonyl Compound as Highâ€Performance Cathode for Lithiumâ€Organic Batteries. ChemSusChem, 2020, 13, 2449-2456.	3.6	41
44	Conjugated Microporous Polymers with Bipolar and Double Redoxâ€Active Centers for Highâ€Performance Dualâ€Ion, Organic Symmetric Battery. Advanced Energy Materials, 2021, 11, 2100381.	10.2	41
45	Nitrogen-doped porous graphene with surface decorated MnO ₂ nanowires as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 7251-7256.	5.2	39
46	Metal phthalocyanine-linked conjugated microporous polymer hybridized with carbon nanotubes as a high-performance flexible electrode for supercapacitors. International Journal of Hydrogen Energy, 2020, 45, 22950-22958.	3.8	37
47	Conjugated microporous polyarylimides immobilization on carbon nanotubes with improved utilization of carbonyls as cathode materials for lithium/sodium-ion batteries. Journal of Colloid and Interface Science, 2021, 601, 446-453.	5.0	36
48	An aromatic carbonyl compound-linked conjugated microporous polymer as an advanced cathode material for lithium-organic batteries. Materials Chemistry Frontiers, 2020, 4, 2697-2703.	3.2	34
49	Fe3O4-nanoparticle-decorated TiO2 nanofiber hierarchical heterostructures with improved lithium-ion battery performance over wide temperature range. Nano Research, 2015, 8, 1659-1668.	5.8	33
50	Graphene encapsulated metallic state Ce ₂ Sn ₂ O ₇ as a novel anode material for superior lithium-ion batteries and capacitors. Journal of Materials Chemistry A, 2020, 8, 5517-5524.	5.2	31
51	Single-spinneret electrospinning fabrication of CoFe2O4 nanotubes as high-performance anode materials for lithium-ion batteries. Materials Letters, 2016, 172, 64-67.	1.3	30
52	<i>In situ</i> anchoring of metal nanoparticles in the N-doped carbon framework derived from conjugated microporous polymers towards an efficient oxygen reduction reaction. Catalysis Science and Technology, 2018, 8, 3572-3579.	2.1	28
53	Highly Stereoselective and Practical Synthesis of αâ€Trichloromethyl Amines and 2,2â€Dichloroaziridines from Chloroform. Advanced Synthesis and Catalysis, 2012, 354, 308-312.	2.1	27
54	Conjugated microporous polymers bearing metallophthalocyanine moieties with enhanced visible-light photocatalytic activity. Dyes and Pigments, 2018, 149, 261-267.	2.0	24

#	Article	IF	CITATIONS
55	A Bipolar and Selfâ€Polymerized Phthalocyanine Complex for Fast and Tunable Energy Storage in Dualâ€lon Batteries. Angewandte Chemie, 2019, 131, 10310-10314.	1.6	24
56	One-step facile synthesis of TiO2/Fe2O3 fiber-in-tube hierarchical heterostructures with improved lithium-ion battery performance. RSC Advances, 2014, 4, 23125.	1.7	22
57	Enhanced toughness of multilayer grapheneâ€filled poly(VInyl chloride) composites prepared using meltâ€mixing method. Polymer Composites, 2017, 38, 138-146.	2.3	21
58	Improved Damping and High Strength of Graphene-Coated Nickel Hybrid Foams. ACS Applied Materials & Interfaces, 2019, 11, 42690-42696.	4.0	21
59	Facile fabrication of Co ₃ O ₄ /nitrogen-doped graphene hybrid materials as high performance anode materials for lithium ion batteries. CrystEngComm, 2016, 18, 3383-3388.	1.3	19
60	Cobalt-phthalocyanine-derived ultrafine Co 3 O 4 nanoparticles as high-performance anode materials for lithium ion batteries. Applied Surface Science, 2017, 414, 398-404.	3.1	19
61	Doped graphene encapsulated SnP2O7 with enhanced conversion reactions from polyanions as a versatile anode material for sodium dual-ion battery. Electrochimica Acta, 2021, 369, 137657.	2.6	19
62	Integrated pyrazine-based porous aromatic frameworks/carbon nanotube composite as cathode materials for aqueous zinc ion batteries. Chemical Engineering Journal, 2022, 450, 138051.	6.6	19
63	Batteries: Homogeneous CoO on Graphene for Binderâ€Free and Ultralongâ€Life Lithium Ion Batteries (Adv. Funct. Mater. 35/2013). Advanced Functional Materials, 2013, 23, 4274-4274.	7.8	17
64	Conjugated ladder-type polymers with multielectron reactions as high-capacity organic anode materials for lithium-ion batteries. Science China Materials, 2022, 65, 2354-2362.	3.5	15
65	Nitrogen-doped porous carbon/Sn composites as high capacity and long life anode materials for lithium-ion batteries. Materials Letters, 2015, 155, 18-22.	1.3	14
66	Metal Phthalocyanineâ€Porphyrinâ€based Conjugated Microporous Polymerâ€derived Bifunctional Electrocatalysts for Znâ€Air Batteries. Chemistry - an Asian Journal, 2020, 15, 1970-1975.	1.7	14
67	Porphyrin-based conjugated microporous polymers with dual active sites as anode materials for lithium-organic batteries. International Journal of Hydrogen Energy, 2022, 47, 10902-10910.	3.8	14
68	Carbonized cotton fiber supported flexible organic lithium ion battery cathodes. Journal of Colloid and Interface Science, 2020, 572, 1-8.	5.0	13
69	Regioselective chlorination and bromination of unprotected anilines under mild conditions using copper halides in ionic liquids. Beilstein Journal of Organic Chemistry, 2012, 8, 744-748.	1.3	12
70	A photo- and thermo-responsive star-shaped diblock copolymer with a porphyrin core prepared via consecutive ATRPs. RSC Advances, 2016, 6, 47912-47918.	1.7	12
71	Designing multi-shelled metal oxides: towards high energy-density lithium-ion batteries. Science China Materials, 2016, 59, 521-522.	3.5	12
72	Carbonylâ€rich Poly(pyreneâ€4,5,9,10â€ŧetraone Sulfide) as Anode Materials for Highâ€Performance Li and Na″on Batteries. Chemistry - an Asian Journal, 2021, 16, 1973-1978.	1.7	12

#	Article	IF	CITATIONS
73	A redox-active metal–organic compound for lithium/sodium-based dual-ion batteries. Journal of Colloid and Interface Science, 2022, 606, 1024-1030.	5.0	11
74	One-dimensional π-d conjugated coordination polymer with double redox-active centers for all-organic symmetric lithium-ion batteries. Chemical Engineering Journal, 2022, 450, 138052.	6.6	11
75	Synthesis of α-glycosidase hybrid nano-flowers and their application for enriching and screening α-glycosidase inhibitors. New Journal of Chemistry, 2018, 42, 429-436.	1.4	10
76	Well-dispersed Sb2O3 nanoparticles encapsulated in multi-channel-carbon nanofibers as high-performance anode materials for Li/dual-ion batteries. International Journal of Hydrogen Energy, 2021, 46, 26308-26317.	3.8	10
77	A facile one-pot synthesis of Co ₂ P nanoparticle-encapsulated doped carbon nanotubes as bifunctional electrocatalysts for high-performance rechargeable Zn–air batteries. CrystEngComm, 2021, 23, 1013-1018.	1.3	10
78	Electrodes: Engraving Copper Foil to Give Largeâ€Scale Binderâ€Free Porous CuO Arrays for a Highâ€Performance Sodiumâ€Ion Battery Anode (Adv. Mater. 14/2014). Advanced Materials, 2014, 26, 2284-2284.	11.1	9
79	Controllable edge modification of multi-layer graphene for improved dispersion stability and high electrical conductivity. Applied Nanoscience (Switzerland), 2019, 9, 469-477.	1.6	8
80	Dual-frequency microwave-driven resonant excitations of skyrmions in nanoscale magnets. RSC Advances, 2014, 4, 62179-62185.	1.7	7
81	New and Convergent Synthesis of Osimertinib. Journal of Heterocyclic Chemistry, 2017, 54, 2898-2901.	1.4	5
82	A Simple Synthesis of Fe ₂ P Nanoparticles Encapsulated Doped Carbon Nanotube as Electrocatalysts for Oxygen Reduction Reaction and Zincâ€Air Battery. Energy Technology, 2022, 10, .	1.8	5
83	A Practical Synthesis of 7-(3-Chloropropoxy)-6-methoxy-4-oxo-1,4-dihydroquinoline-3-carbonitrile, a Key Intermediate to Bosutinib. Organic Preparations and Procedures International, 2015, 47, 207-213.	0.6	4
84	A New Synthesis of Cabozantinib. Organic Preparations and Procedures International, 2019, 51, 381-387.	0.6	4
85	Electrospun carbon nanofiber decorated with Co-Ni alloy nanoparticles as a bifunctional electrocatalyst for Zn-ir battery. Materials Letters, 2020, 275, 128135.	1.3	4
86	Hyper-Crosslinked Polymer-Derived Nitrogen-Doped Hierarchical Porous Carbon as Metal-Free Electrocatalysts for High-Efficiency Oxygen Reduction. Energy & Fuels, 2021, 35, 19614-19623.	2.5	3
87	Synthesis and characterization of tetrathiafulvalene-Ï <i>f-</i> thiophene dyads. Journal of Chemical Sciences, 2020, 132, 1.	0.7	2
88	Kilogram Synthesis of Crebinostat. Synthesis, 2016, 48, 1318-1321.	1.2	1
89	New Synthesis of 7â€(3â€chloropropoxy)â€4â€hydroxyâ€6â€methoxyquinolineâ€3â€carbonitrile, a Key Interme Bosutinib. Journal of Heterocyclic Chemistry, 2017, 54, 2237-2241.	diate to 1.4	1
90	New and convergent synthesis of saflufenacil. Journal of Heterocyclic Chemistry, 2020, 57, 151-156.	1.4	1

#	Article	IF	CITATIONS
91	Synthesis, electropolymerization, and electrochromic performances of two novel tetrathiafulvalene–thiophene assemblies. E-Polymers, 2020, 20, 382-392.	1.3	1
92	Electropolymerizations and electrochromic performances of tetrathiafulvalene-σ-thiophenes. Polymer Bulletin, 2021, 78, 5953-5961.	1.7	0
93	Corrigendum to "Carbonized cotton fiber supported flexible organic lithium ion battery cathodes― [J. Colloid Interface Sci. 572 (2020) 1–8]. Journal of Colloid and Interface Science, 2021, 602, 901.	5.0	Ο
94	Heteroatom-doped hollow carbon material as an electrocatalyst for oxygen reduction reaction. Journal of Physics: Conference Series, 2021, 2079, 012007.	0.3	0
95	Carbonyl-based polyimide immobilization on carbon nanotubes for aqueous zinc-ion batteries. Journal of Physics: Conference Series, 2021, 2085, 012032.	0.3	Ο
96	ZIF-67-aerogel-derived N-doped carbon nanotubes encapsulated with Co nanoparticles as efficient electrocatalysts. Journal of Physics: Conference Series, 2021, 2085, 012030.	0.3	0
97	Cobalt Nanoparticles Embedded into Nitrogenâ€doped Graphene with Abundant Macropores as a Bifunctional Electrocatalyst for Rechargeable Zincâ€air Batteries. Chemistry - an Asian Journal, 2022, , .	1.7	0