Karl G Richards

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4168823/publications.pdf

Version: 2024-02-01

109264 4,603 166 35 citations h-index papers

g-index 183 183 183 4735 docs citations times ranked citing authors all docs

155592

55

#	Article	IF	Citations
1	Nitrous oxide responses to long-term phosphorus application on pasture soil. New Zealand Journal of Agricultural Research, 2023, 66, 171-188.	0.9	3
2	Impacts of pasture species and ruminant urine on N ₂ O emissions and nitrogen transforming microbial communities in soil mesocosms. New Zealand Journal of Agricultural Research, 2022, 65, 42-62.	0.9	6
3	Nitrous oxide emission factors from an intensively grazed temperate grassland: A comparison of cumulative emissions determined by eddy covariance and static chamber methods. Agriculture, Ecosystems and Environment, 2022, 324, 107725.	2.5	10
4	Assessing nitrous oxide emissions in time and space with minimal uncertainty using static chambers and eddy covariance from a temperate grassland. Agricultural and Forest Meteorology, 2022, 313, 108743.	1.9	2
5	Effect of contrasting phosphorus levels on nitrous oxide and carbon dioxide emissions from temperate grassland soils. Scientific Reports, 2022, 12, 2602.	1.6	10
6	The Survival of Salmonella Senftenberg, Escherichia coli O157:H7, Listeria monocytogenes, Enterococcus faecalis and Clostridium sporogenes in Sandy and Clay Loam Textured Soils When Applied in Bovine Slurry or Unpasteurised Digestate and the Run-Off Rate for a Test Bacterium, Listeria innocua, When Applied to Grass in Slurry and Digestate. Frontiers in Sustainable Food Systems, 2022,	1.8	1
7	6, . Accelerating the development of biological nitrification inhibition as a viable nitrous oxide mitigation strategy in grazed livestock systems. Biology and Fertility of Soils, 2022, 58, 235-240.	2.3	6
8	Biotic and abiotic predictors of potential N2O emissions from denitrification in Irish grasslands soils: A national-scale field study. Soil Biology and Biochemistry, 2022, 168, 108637.	4.2	18
9	Patterns and Drivers of Groundwater and Stream Nitrate Concentrations in Intensively Managed Agricultural Catchments. Water (Switzerland), 2022, 14, 1388.	1.2	3
10	Reduced tillage with residue retention and nitrogen application rate increase N2O fluxes from irrigated wheat in a subtropical floodplain soil. Agriculture, Ecosystems and Environment, 2021, 306, 107194.	2.5	14
11	Grassland Phosphorus and Nitrogen Fertiliser Replacement value of Dairy Processing Dewatered Sludge. Sustainable Production and Consumption, 2021, 25, 363-373.	5.7	25
12	Assessing the impact of long-term soil phosphorus on N-transformation pathways using 15N tracing. Soil Biology and Biochemistry, 2021, 152, 108066.	4.2	20
13	Application of plasma activated water for decontamination of alfalfa and mung bean seeds. Food Microbiology, 2021, 96, 103708.	2.1	29
14	Development and verification of a novel isotopic N 2 O measurement technique for discrete static chamber samples using cavity ringâ€down spectroscopy. Rapid Communications in Mass Spectrometry, 2021, 35, e9049.	0.7	4
15	Gross N transformations vary with soil moisture and time following urea deposition to a pasture soil. Geoderma, 2021, 386, 114904.	2.3	15
16	Increasing soil pH reduces fertiliser derived N2O emissions in intensively managed temperate grassland. Agriculture, Ecosystems and Environment, 2021, 311, 107319.	2.5	31
17	An analysis of the spatio-temporal occurrence of anthelmintic veterinary drug residues in groundwater. Science of the Total Environment, 2021, 769, 144804.	3.9	27
18	Development of One-Step Non-Solvent Extraction and Sensitive UHPLC-MS/MS Method for Assessment of N-(n-Butyl) Thiophosphoric Triamide (NBPT) and N-(n-Butyl) Phosphoric Triamide (NBPTo) in Milk. Molecules, 2021, 26, 2890.	1.7	7

#	Article	IF	CITATIONS
19	Differing effects of increasing calcium ammonium nitrate, urea and urea + NBPT fertiliser rates on nitrous oxide emission factors at six temperate grassland sites in Ireland. Agriculture, Ecosystems and Environment, 2021, 313, 107382.	2.5	16
20	Preparation and Antimicrobial Properties of Alginate and Serum Albumin/Glutaraldehyde Hydrogels Impregnated with Silver(I) Ions. Chemistry, 2021, 3, 672-686.	0.9	8
21	Sustainability of ruminant livestock production in Ireland. Animal Frontiers, 2021, 11, 32-43.	0.8	9
22	Competition and community succession link N transformation and greenhouse gas emissions in urine patches. Science of the Total Environment, 2021, 779, 146318.	3.9	6
23	Source partitioning using N2O isotopomers and soil WFPS to establish dominant N2O production pathways from different pasture sward compositions. Science of the Total Environment, 2021, 781, 146515.	3.9	13
24	Ammonium-Based Compound Fertilisers Mitigate Nitrous Oxide Emissions in Temperate Grassland. Agronomy, 2021, 11, 1712.	1.3	7
25	Survival of Escherichia coli and Listeria innocua on Lettuce after Irrigation with Contaminated Water in a Temperate Climate. Foods, 2021, 10, 2072.	1.9	6
26	Evaluation of proximal sensing technologies for mapping bovine urine patches under grazing pastures. Computers and Electronics in Agriculture, 2021, 188, 106309.	3.7	2
27	A Bayesian inference approach to quantify average pathogen loads in farmyard manure and slurry using open-source Irish datasets. Science of the Total Environment, 2021, 786, 147474.	3.9	4
28	Beneficial effects of multi-species mixtures on N2O emissions from intensively managed grassland swards. Science of the Total Environment, 2021, 792, 148163.	3.9	34
29	Risk assessment of Escherichia coli in bioaerosols generated following land application of farmyard slurry. Science of the Total Environment, 2021, 791, 148189.	3.9	16
30	Quantitative microbial human exposure model for faecal indicator bacteria and risk assessment of pathogenic Escherichia coli in surface runoff following application of dairy cattle slurry and co-digestate to grassland. Journal of Environmental Management, 2021, 299, 113627.	3.8	5
31	Evaluation of pathogen concentration in anaerobic digestate using a predictive modelling approach (ADRISK). Science of the Total Environment, 2021, 800, 149574.	3.9	9
32	Quantitative microbial risk assessment associated with ready-to-eat salads following the application of farmyard manure and slurry or anaerobic digestate to arable lands. Science of the Total Environment, 2021, 806, 151227.	3.9	10
33	Urea treatment decouples intrinsic pH control over N2O emissions in soils. Soil Biology and Biochemistry, 2021, 163, 108461.	4.2	5
34	Current knowledge on urease and nitrification inhibitors technology and their safety. Reviews on Environmental Health, 2021, 36, 477-491.	1.1	10
35	Novel Use of Dairy Processing Sludge Derived Pyrogenic Char (DPS-PC) to Remove Phosphorus in Discharge Effluents. Waste and Biomass Valorization, 2020, 11, 1453-1465.	1.8	10
36	Ranking hazards pertaining to human health concerns from land application of anaerobic digestate. Science of the Total Environment, 2020, 710, 136297.	3.9	47

#	Article	IF	Citations
37	Exploring nitrogen indicators of farm performance among farm types across several European case studies. Agricultural Systems, 2020, 177, 102689.	3.2	102
38	Nitrogen transformation processes and gaseous emissions from a humic gley soil at two water filled pore spaces. Soil and Tillage Research, 2020, 198, 104543.	2.6	7
39	Nitrogen fertiliser interactions with urine deposit affect nitrous oxide emissions from grazed grasslands. Agriculture, Ecosystems and Environment, 2020, 290, 106784.	2.5	19
40	Impact of beef extract used for sample concentration on the detection of Escherichia coli DNA in water samples via qPCR. Journal of Microbiological Methods, 2020, 168, 105786.	0.7	4
41	Scenarios to limit environmental nitrogen losses from dairy expansion. Science of the Total Environment, 2020, 707, 134606.	3.9	22
42	A Small Study of Bacterial Contamination of Anaerobic Digestion Materials and Survival in Different Feed Stocks. Bioengineering, 2020, 7, 116.	1.6	6
43	Landspreading with co-digested cattle slurry, with or without pasteurisation, as a mitigation strategy against pathogen, nutrient and metal contamination associated with untreated slurry. Science of the Total Environment, 2020, 744, 140841.	3.9	12
44	Potential loss of nutrients, carbon and metals in simulated runoff associated with dairy processing sludge application. International Journal of Environmental Science and Technology, 2020, 17, 3955-3968.	1.8	7
45	Urease and Nitrification Inhibitors—As Mitigation Tools for Greenhouse Gas Emissions in Sustainable Dairy Systems: A Review. Sustainability, 2020, 12, 6018.	1.6	71
46	An investigation of anticoccidial veterinary drugs as emerging organic contaminants in groundwater. Science of the Total Environment, 2020, 746, 141116.	3.9	29
47	Application of 15N tracing for estimating nitrogen cycle processes in soils of a constructed wetland. Water Research, 2020, 183, 116062.	5.3	19
48	The effect of carbon availability on N2O emissions is moderated by soil phosphorus. Soil Biology and Biochemistry, 2020, 142, 107726.	4.2	18
49	A new sensitive method for the simultaneous chromatographic separation and tandem mass spectrometry detection of anticoccidials, including highly polar compounds, in environmental waters. Journal of Chromatography A, 2020, 1618, 460857.	1.8	13
50	Nitrogen fertilisers with urease inhibitors reduce nitrous oxide and ammonia losses, while retaining yield in temperate grassland. Science of the Total Environment, 2020, 725, 138329.	3.9	36
51	Sward composition and soil moisture conditions affect nitrous oxide emissions and soil nitrogen dynamics following urea-nitrogen application. Science of the Total Environment, 2020, 722, 137780.	3.9	16
52	Anaerobic digestion of agricultural manure and biomass – Critical indicators of risk and knowledge gaps. Science of the Total Environment, 2019, 690, 460-479.	3.9	67
53	The effects of urine nitrogen application rate on nitrogen transformations in grassland soils. Journal of Agricultural Science, 2019, 157, 515-522.	0.6	11
54	Microbial Contamination of Fresh Produce: What, Where, and How?. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1727-1750.	5.9	143

#	Article	IF	CITATIONS
55	Impact of nitrogen compounds on fungal and bacterial contributions to codenitrification in a pasture soil. Scientific Reports, 2019, 9, 13371.	1.6	14
56	Development and Optimisation of a Multiresidue Method for the Determination of 40 Anthelmintic Compounds in Environmental Water Samples by Solid Phase Extraction (SPE) with LC-MS/MS Detection. Molecules, 2019, 24, 1978.	1.7	17
57	Dairy industry derived wastewater treatment sludge: Generation, type and characterization of nutrients and metals for agricultural reuse. Journal of Cleaner Production, 2019, 230, 1266-1275.	4.6	70
58	Leaching of Free and Conjugate Natural Estrogens in Soil Monoliths. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	2
59	Editorial: RAMIRAN 2017: Sustainable Utilisation of Manures and Residue Resources in Agriculture. Frontiers in Sustainable Food Systems, 2019, 3, .	1.8	0
60	Reactive carbon and nitrogen concentrations and dynamics in groundwater beneath an earthen-lined integrated constructed wetland. Ecological Engineering, 2019, 126, 55-63.	1.6	9
61	The effect of soil pH and phosphorus interactions on nitrous oxide emissions and microbial communities involved in nitrogen cycling. Access Microbiology, 2019, 1 , .	0.2	0
62	Characteristics of hydrophobic and hydrophilic acid fractions in drainage waters of undisturbed soil lysimeters. Journal of Soils and Sediments, 2018, 18, 3197-3214.	1.5	2
63	Proportion of Sewage Sludge to Soil Influences the Survival of <i>Salmonella</i> Dublin and <i>Escherichia coli</i> Clean - Soil, Air, Water, 2018, 46, 1800042.	0.7	11
64	Feeding dicyandiamide (DCD) to cattle: An effective method to reduce N2O emissions from urine patches in a heavy-textured soil under temperate climatic conditions. Science of the Total Environment, 2018, 615, 1319-1331.	3.9	10
65	Fungal and bacterial contributions to codenitrification emissions of N2O and N2 following urea deposition to soil. Nutrient Cycling in Agroecosystems, 2018, 110, 135-149.	1.1	34
66	Review: the environmental status and implications of the nitrate time lag in Europe and North America. Hydrogeology Journal, 2018, 26, 7-22.	0.9	53
67	Risk Assessment of E. coli Survival Up to the Grazing Exclusion Period After Dairy Slurry, Cattle Dung, and Biosolids Application to Grassland. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	5
68	Toward Assessing Farm-Based Anaerobic Digestate Public Health Risks: Comparative Investigation With Slurry, Effect of Pasteurization Treatments, and Use of Miniature Bioreactors as Proxies for Pathogen Spiking Trials. Frontiers in Sustainable Food Systems, 2018, 2, .	1.8	14
69	Assessing the performance of three frequently used biogeochemical models when simulating N2O emissions from a range of soil types and fertiliser treatments. Geoderma, 2018, 331, 53-69.	2.3	25
70	Soils and Water Quality. World Soils Book Series, 2018, , 235-243.	0.1	2
71	A framework for determining unsaturated zone water quality time lags at catchment scale. Agriculture, Ecosystems and Environment, 2017, 236, 234-242.	2.5	21
72	An evaluation of urine patch simulation methods for nitrous oxide emission measurement. Journal of Agricultural Science, 2017, 155, 725-732.	0.6	12

#	Article	IF	Citations
73	Integrated assessment of agricultural nutrient pressures and legacies in karst landscapes. Agriculture, Ecosystems and Environment, 2017, 239, 246-256.	2.5	38
74	In situ denitrification and DNRA rates in groundwater beneath an integrated constructed wetland. Water Research, 2017, 111, 254-264.	5.3	73
75	Gross nitrogen transformations in grassland soil react differently to urea stabilisers under laboratory and field conditions. Soil Biology and Biochemistry, 2017, 109, 23-34.	4.2	32
76	Ammonia emissions from urine patches amended with N stabilized fertilizer formulations. Nutrient Cycling in Agroecosystems, 2017, 108, 163-175.	1.1	11
77	Hydrogeological characteristics influencing the occurrence of pesticides and pesticide metabolites in groundwater across the Republic of Ireland. Science of the Total Environment, 2017, 601-602, 594-602.	3.9	28
78	Influence of soil moisture on codenitrification fluxes from a urea-affected pasture soil. Scientific Reports, 2017, 7, 2185.	1.6	44
79	Groundwater nitrate reduction versus dissolved gas production: A tale of two catchments. Science of the Total Environment, 2017, 586, 372-389.	3.9	59
80	Combining stable isotopes with contamination indicators: A method for improved investigation of nitrate sources and dynamics in aquifers with mixed nitrogen inputs. Water Research, 2017, 124, 85-96.	5.3	112
81	Response to nitrogen addition reveals metabolic and ecological strategies of soil bacteria. Molecular Ecology, 2017, 26, 5500-5514.	2.0	26
82	Can the agronomic performance of urea equal calcium ammonium nitrate across nitrogen rates in temperate grassland?. Soil Use and Management, 2017, 33, 243-251.	2.6	17
83	Agricultural anaerobic digestion power plants in Ireland and Germany: policy and practice. Journal of the Science of Food and Agriculture, 2017, 97, 719-723.	1.7	24
84	The interactive effects of various nitrogen fertiliser formulations applied to urine patches on nitrous oxide emissions in grassland. Irish Journal of Agricultural and Food Research, 2017, 56, 54-64.	0.2	9
85	Temperate Grassland Yields and Nitrogen Uptake Are Influenced by Fertilizer Nitrogen Source. Agronomy Journal, 2017, 109, 71-79.	0.9	15
86	Carbon and nitrogen dynamics and greenhouse gas emissions in constructed wetlands treating wastewater: a review. Hydrology and Earth System Sciences, 2016, 20, 109-123.	1.9	54
87	Ammonia emissions from urea, stabilized urea and calcium ammonium nitrate: insights into loss abatement in temperate grassland. Soil Use and Management, 2016, 32, 92-100.	2.6	66
88	Ammonia emissions from cattle dung, urine and urine with dicyandiamide in a temperate grassland. Soil Use and Management, 2016, 32, 83-91.	2.6	23
89	Phylogenetic and functional potential links pH and N2O emissions in pasture soils. Scientific Reports, 2016, 6, 35990.	1.6	67
90	The interactive effects of fertiliser nitrogen with dung and urine on nitrous oxide emissions in grassland. Irish Journal of Agricultural and Food Research, 2016, 55, 1-9.	0.2	10

#	Article	IF	CITATIONS
91	A methodological framework to determine optimum durations for the construction of soil water characteristic curves using centrifugation. Irish Journal of Agricultural and Food Research, 2016, 55, 91-99.	0.2	8
92	Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils. Environmental Science and Pollution Research, 2016, 23, 7899-7910.	2.7	35
93	Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate (CAN) to urea based formulations. Science of the Total Environment, 2016, 563-564, 576-586.	3.9	126
94	The effect of renovation of long-term temperate grassland on N2O emissions and N leaching from contrasting soils. Science of the Total Environment, 2016, 560-561, 233-240.	3.9	18
95	Mixing dicyandiamide (DCD) with supplementary feeds for cattle: An effective method to deliver a nitrification inhibitor in urine patches. Agriculture, Ecosystems and Environment, 2016, 231, 114-121.	2.5	19
96	Impact of fertiliser nitrogen formulation, and N stabilisers on nitrous oxide emissions in spring barley. Agriculture, Ecosystems and Environment, 2016, 233, 229-237.	2.5	38
97	Improving and disaggregating N2O emission factors for ruminant excreta on temperate pasture soils. Science of the Total Environment, 2016, 568, 327-338.	3.9	73
98	Amendment of cattle slurry with the nitrification inhibitor dicyandiamide during storage: A new effective and practical N2O mitigation measure for landspreading. Agriculture, Ecosystems and Environment, 2016, 215, 68-75.	2.5	15
99	High-Resolution Denitrification Kinetics in Pasture Soils Link N2O Emissions to pH, and Denitrification to C Mineralization. PLoS ONE, 2016, 11, e0151713.	1.1	62
100	A field-based comparison of ammonia emissions from six Irish soil types following urea fertiliser application. Irish Journal of Agricultural and Food Research, 2016, 55, 152-158.	0.2	6
101	Confirmation of co-denitrification in grazed grassland. Scientific Reports, 2015, 5, 17361.	1.6	59
102	The effect of precipitation and application rate on dicyandiamide persistence and efficiency in two Irish grassland soils. Soil Use and Management, 2015, 31, 367-374.	2.6	17
103	Technical Note: Field experiences using UV/VIS sensors for high-resolution monitoring of nitrate in groundwater. Hydrology and Earth System Sciences, 2015, 19, 1589-1598.	1.9	36
104	Enteropathogen survival in soil from different land-uses is predominantly regulated by microbial community composition. Applied Soil Ecology, 2015, 89, 76-84.	2.1	39
105	Effect of an agri-environmental measure on nitrate leaching from a beef farming system in Ireland. Agriculture, Ecosystems and Environment, 2015, 202, 17-24.	2.5	6
106	In situ N2O emissions are not mitigated by hippuric and benzoic acids under denitrifying conditions. Science of the Total Environment, 2015, 511, 362-368.	3.9	29
107	The effect of the nitrification inhibitor dicyandiamide (DCD) on nitrous oxide and methane emissions after cattle slurry application to Irish grassland. Agriculture, Ecosystems and Environment, 2015, 199, 339-349.	2.5	40
108	Determination and Occurrence of Phenoxyacetic Acid Herbicides and Their Transformation Products in Groundwater Using Ultra High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. Molecules, 2014, 19, 20627-20649.	1.7	30

#	Article	IF	CITATIONS
109	Mobilisation or dilution? Nitrate response of karst springs to high rainfall events. Hydrology and Earth System Sciences, 2014, 18, 4423-4435.	1.9	60
110	Pesticide occurrence in groundwater and the physical characteristics in association with these detections in Ireland. Environmental Monitoring and Assessment, 2014, 186, 7819-7836.	1.3	21
111	Editorial: Innovations for sustainable use of nitrogen resources. Journal of Agricultural Science, 2014, 152, 1-1.	0.6	0
112	Permeable reactive interceptors: blocking diffuse nutrient and greenhouse gases losses in key areas of the farming landscape. Journal of Agricultural Science, 2014, 152, 71-81.	0.6	29
113	Consequences of varied soil hydraulic and meteorological complexity on unsaturated zone time lag estimates. Journal of Contaminant Hydrology, 2014, 170, 53-67.	1.6	21
114	The effect of urinary nitrogen loading rate and a nitrification inhibitor on nitrous oxide emissions from a temperate grassland soil. Journal of Agricultural Science, 2014, 152, 159-171.	0.6	37
115	Concluding Editorial: Conclusions of the 17th International Nitrogen Workshop. Journal of Agricultural Science, 2014, 152, 182-184.	0.6	0
116	The effect of dicyandiamide addition to cattle slurry on soil gross nitrogen transformations at a grassland site in Northern Ireland. Journal of Agricultural Science, 2014, 152, 125-136.	0.6	4
117	The nitrification inhibitor dicyandiamide increases mineralization–immobilization turnover in slurry-amended grassland soil. Journal of Agricultural Science, 2014, 152, 137-149.	0.6	33
118	Mustard catch crop enhances denitrification in shallow groundwater beneath a spring barley field. Chemosphere, 2014, 103, 234-239.	4.2	11
119	Effects of over-winter green cover on soil solution nitrate concentrations beneath tillage land. Science of the Total Environment, 2014, 470-471, 967-974.	3.9	15
120	Coupling of surface water and groundwater nitrate-N dynamics in two permeable agricultural catchments. Journal of Agricultural Science, 2014, 152, 107-124.	0.6	36
121	Soil tests for predicting nitrogen supply for grassland under controlled environmental conditions. Journal of Agricultural Science, 2014, 152, 82-95.	0.6	6
122	Denitrification and indirect N2O emissions in groundwater: Hydrologic and biogeochemical influences. Journal of Contaminant Hydrology, 2013, 152, 70-81.	1.6	70
123	Abundance of denitrification genes under different peizometer depths in four Irish agricultural groundwater sites. Environmental Science and Pollution Research, 2013, 20, 6646-6657.	2.7	15
124	Comparison of pesticide leaching potential to groundwater under EU FOCUS and site specific conditions. Science of the Total Environment, 2013, 463-464, 432-441.	3.9	7
125	A review of nitrous oxide mitigation by farm nitrogen management inÂtemperate grassland-based agriculture. Journal of Environmental Management, 2013, 128, 893-903.	3.8	44
126	Slow delivery of a nitrification inhibitor (dicyandiamide) to soil using a biodegradable hydrogel of chitosan. Chemosphere, 2013, 93, 2854-2858.	4.2	29

#	Article	IF	CITATIONS
127	Impact of agronomic practices of an intensive dairy farm on nitrogen concentrations in a karst aquifer in Ireland. Agriculture, Ecosystems and Environment, 2013, 179, 187-199.	2.5	39
128	Quantitative solid phase microextraction – Gas chromatography mass spectrometry analysis of the pesticides lindane, heptachlor and two heptachlor transformation products in groundwater. Journal of Chromatography A, 2013, 1284, 1-7.	1.8	21
129	Quantification of In Situ Denitrification Rates in Groundwater Below an Arable and a Grassland System. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	26
130	Insights into the low-temperature adaptation and nutritional flexibility of a soil-persistent <i>Escherichia coli</i> . FEMS Microbiology Ecology, 2013, 84, 75-85.	1.3	27
131	Impact of Soil Type, Biology and Temperature on the Survival of Non-Toxigenic <i>Escherichia</i> O157. Biology and Environment, 2013, 113, 1-6.	0.2	11
132	Spatial and Temporal Variations of Nutrient Loads in Overland Flow and Subsurface Drainage from A Marginal Land Site in South-East Ireland. Biology and Environment, 2013, 113, 1-18.	0.2	13
133	SPATIAL AND TEMPORAL VARIATIONS OF NUTRIENT LOADS IN OVERLAND FLOW AND SUBSURFACE DRAINAGE FROM A MARGINAL LAND SITE IN SOUTH-EAST IRELAND. Biology and Environment, 2013, 113B, 169-186.	0.2	7
134	Evaluating < i>E. coli < /i> Transport Risk in Soil using Dye and Bromide Tracers. Soil Science Society of America Journal, 2012, 76, 663-673.	1.2	9
135	Evaluating the utility of 15N and 18O isotope abundance analyses to identify nitrate sources: A soil zone study. Water Research, 2012, 46, 3723-3736.	5. 3	38
136	Evaluation of headspace equilibration methods for quantifying greenhouse gases in groundwater. Journal of Environmental Management, 2012, 111, 208-212.	3.8	28
137	Effects of over-winter green cover on groundwater nitrate and dissolved organic carbon concentrations beneath tillage land. Science of the Total Environment, 2012, 438, 144-153.	3.9	23
138	Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive; a benchmark study. Biogeosciences, 2012, 9, 5143-5160.	1.3	162
139	The effect of cattle slurry in combination with nitrate and the nitrification inhibitor dicyandiamide on in situ nitrous oxide and dinitrogen emissions. Biogeosciences, 2012, 9, 4909-4919.	1.3	22
140	Denitrification potential in subsoils: A mechanism to reduce nitrate leaching to groundwater. Agriculture, Ecosystems and Environment, 2012, 147, 13-23.	2.5	139
141	Groundwater: A pathway for terrestrial C and N losses and indirect greenhouse gas emissions. Agriculture, Ecosystems and Environment, 2012, 159, 40-48.	2.5	48
142	Linking hydrogeochemistry to nitrate abundance in groundwater in agricultural settings in Ireland. Journal of Hydrology, 2012, 448-449, 212-222.	2.3	34
143	Water Content and Soil Type Effects on Accelerated Leaching after Slurry Application. Vadose Zone Journal, 2012, 11, .	1.3	15
144	Reducing Nitrate Losses from Simulated Grazing on Grassland Lysimeters in Ireland Using a Nitrification Inhibitor (Dicyandiamide). Biology and Environment, 2012, 112, 1-11.	0.2	10

#	Article	IF	Citations
145	REDUCING NITRATE LOSSES FROM SIMULATED GRAZING ON GRASSLAND LYSIMETERS IN IRELAND USING A NITRIFICATION INHIBITOR (DICYANDIAMIDE). Biology and Environment, 2012, 112B, 79-89.	0.2	23
146	The effects of dairy cow weight on selected soil physical properties indicative of compaction. Soil Use and Management, 2011, 27, 36-44.	2.6	46
147	Does soil biology hold the key to optimized slurry management? A manifesto for research. Soil Use and Management, 2011, 27, 464-469.	2.6	7
148	Denitrification enzyme activity and potential of subsoils under grazed grasslands assayed by membrane inlet mass spectrometer. Soil Biology and Biochemistry, 2011, 43, 1787-1797.	4.2	23
149	An on-farm survey of spatial and temporal stratifications of $17\hat{l}^2$ -estradiol concentrations. Chemosphere, 2011, 82, 1683-1689.	4.2	18
150	The fate of slurry-N fractions in herbage and soil during two growing seasons following application. Plant and Soil, 2011, 342, 83-96.	1.8	17
151	Exploring the relationship between groundwater geochemical factors and denitrification potentials on a dairy farm in southeast Ireland. Ecological Engineering, 2011, 37, 1304-1313.	1.6	13
152	Time lag: a methodology for the estimation of vertical and horizontal travel and flushing timescales to nitrate threshold concentrations in Irish aquifers. Environmental Science and Policy, 2011, 14, 419-431.	2.4	72
153	Effects of field-manure applications on stratified $17\hat{l}^2$ -estradiol concentrations. Journal of Hazardous Materials, 2011, 192, 748-752.	6.5	23
154	The effect of application method and timing of application on slurry 15NH4-N recovery in herbage and soil. Advances in Animal Biosciences, 2010, 1, 80.	1.0	0
155	Slurry 15NH4-N recovery in herbage and soil: effects of application method and timing. Plant and Soil, 2010, 330, 357-368.	1.8	27
156	Modelling soil phosphorus decline: Expectations of Water Framework Directive policies. Environmental Science and Policy, 2010, 13, 472-484.	2.4	108
157	Characterization of Environmentally Persistent <i>Escherichia coli</i> Isolates Leached from an Irish Soil. Applied and Environmental Microbiology, 2010, 76, 2175-2180.	1.4	61
158	Long-Term Persistence and Leaching of <i>Escherichia coli </i> in Temperate Maritime Soils. Applied and Environmental Microbiology, 2010, 76, 1449-1455.	1.4	97
159	Compositional changes in the hydrophobic acids fraction of drainage water from different land management practices. Water Research, 2010, 44, 4379-4390.	5.3	13
160	Gaseous Nitrogen Losses from a Cambisol Cropped to Spring Wheat with Urea Sizes and Placement Depths. Soil Science Society of America Journal, 2009, 73, 1335-1344.	1.2	31
161	Factors affecting nitrate distribution in shallow groundwater under a beef farm in South Eastern Ireland. Journal of Environmental Management, 2009, 90, 3135-3146.	3.8	66
162	Assessing the potential for the occurrence and character of preferential flow in three Irish grassland soils using image analysis. Geoderma, 2009, 153, 362-371.	2.3	28

#	Article	IF	CITATIONS
163	Evaluation of Cover Crop and Reduced Cultivation for Reducing Nitrate Leaching in Ireland. Journal of Environmental Quality, 2008, 37, 138-145.	1.0	67
164	Unsaturated zone travel time to groundwater on a vulnerable site. Irish Geography, 2005, 38, 57-71.	0.2	9
165	Identifying Urine Patches on Intensively Managed Grassland Using Aerial Imagery Captured From Remotely Piloted Aircraft Systems. Frontiers in Sustainable Food Systems, 0, 2, .	1.8	11
166	Can nitrogen input mapping from aerial imagery improve nitrous oxide emissions estimates from grazed grassland?. Precision Agriculture, 0, , .	3.1	0