Federico Calegari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4168792/publications.pdf

Version: 2024-02-01

68 papers

5,256 citations

32 h-index 61 g-index

76 all docs 76
docs citations

76 times ranked 6740 citing authors

#	Article	IF	CITATIONS
1	Cdk4/CyclinD1 Overexpression in Neural Stem Cells Shortens G1, Delays Neurogenesis, and Promotes the Generation and Expansion of Basal Progenitors. Cell Stem Cell, 2009, 5, 320-331.	5.2	490
2	Storage and Release of ATP from Astrocytes in Culture. Journal of Biological Chemistry, 2003, 278, 1354-1362.	1.6	441
3	Selective Lengthening of the Cell Cycle in the Neurogenic Subpopulation of Neural Progenitor Cells during Mouse Brain Development. Journal of Neuroscience, 2005, 25, 6533-6538.	1.7	351
4	Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nature Communications, 2011, 2, 154.	5.8	330
5	An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. Journal of Cell Science, 2003, 116, 4947-4955.	1.2	315
6	Cell cycle control of mammalian neural stem cells: putting a speed limit on G1. Trends in Cell Biology, 2010, 20, 233-243.	3.6	246
7	NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program. EMBO Journal, 2016, 35, 24-45.	3.5	216
8	Transcriptome sequencing during mouse brain development identifies long non-coding RNAs functionally involved in neurogenic commitment. EMBO Journal, 2013, 32, 3145-3160.	3.5	215
9	<scp>CPAP</scp> promotes timely cilium disassembly to maintain neural progenitor pool. EMBO Journal, 2016, 35, 803-819.	3.5	208
10	Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO Journal, 2013, 32, 1817-1828.	3.5	185
11	Cdks and cyclins link G ₁ length and differentiation of embryonic, neural and hematopoietic stem cells. Cell Cycle, 2010, 9, 1893-1900.	1.3	164
12	Live Imaging at the Onset of Cortical Neurogenesis Reveals Differential Appearance of the Neuronal Phenotype in Apical versus Basal Progenitor Progeny. PLoS ONE, 2008, 3, e2388.	1.1	157
13	Tissue-specific RNA interference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14236-14240.	3.3	148
14	A Regulated Secretory Pathway in Cultured Hippocampal Astrocytes. Journal of Biological Chemistry, 1999, 274, 22539-22547.	1.6	142
15	Myosin II is required for interkinetic nuclear migration of neural progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16487-16492.	3.3	142
16	Overexpression of cdk4 and cyclinD1 triggers greater expansion of neural stem cells in the adult mouse brain. Journal of Experimental Medicine, 2011, 208, 937-948.	4.2	109
17	Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life. Nature Communications, 2020, 11, 135.	5.8	102
18	Doxycycline-dependent photoactivated gene expression in eukaryotic systems. Nature Methods, 2009, 6, 527-531.	9.0	81

#	Article	IF	CITATIONS
19	The H ⁺ Vacuolar ATPase Maintains Neural Stem Cells in the Developing Mouse Cortex. Stem Cells and Development, 2011, 20, 843-850.	1.1	78
20	Single-cell detection of microRNAs in developing vertebrate embryos after acute administration of a dual-fluorescence reporter/sensor plasmid. BioTechniques, 2006, 41, 727-732.	0.8	71
21	Long nonâ€coding <scp>RNA</scp> s in corticogenesis: deciphering the nonâ€coding code of the brain. EMBO Journal, 2015, 34, 2865-2884.	3.5	71
22	Mechanisms of brain evolution: Regulation of neural progenitor cell diversity and cell cycle length. Neuroscience Research, 2014, 86, 14-24.	1.0	69
23	Age-related cognitive decline: Can neural stem cells help us?. Aging, 2012, 4, 176-186.	1.4	68
24	Defective Secretion of Islet Hormones in Chromogranin-B Deficient Mice. PLoS ONE, 2010, 5, e8936.	1.1	61
25	MicroRNAs Establish Robustness and Adaptability of a Critical Gene Network to Regulate Progenitor Fate Decisions during Cortical Neurogenesis. Cell Reports, 2014, 7, 1779-1788.	2.9	56
26	A Highly Conserved Circular RNA Is Required to Keep Neural Cells in a Progenitor State in the Mammalian Brain. Cell Reports, 2020, 30, 2170-2179.e5.	2.9	53
27	Chromogranin B Gene Ablation Reduces the Catecholamine Cargo and Decelerates Exocytosis in Chromaffin Secretory Vesicles. Journal of Neuroscience, 2010, 30, 950-957.	1.7	51
28	CCND1–CDK4–mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo. Journal of Experimental Medicine, 2015, 212, 1171-1183.	4.2	50
29	An increase in neural stem cells and olfactory bulb adult neurogenesis improves discrimination of highly similar odorants. EMBO Journal, 2019, 38, .	3.5	49
30	DOT1L promotes progenitor proliferation and primes neuronal layer identity in the developing cerebral cortex. Nucleic Acids Research, 2019, 47, 168-183.	6.5	49
31	Tox: a multifunctional transcription factor and novel regulator of mammalian corticogenesis. EMBO Journal, 2015, 34, 896-910.	3.5	43
32	The evolution of basal progenitors in the developing non-mammalian brain. Development (Cambridge), 2016, 143, 66-74.	1.2	40
33	Tissue-specific RNA interference in post-implantation mouse embryos using directional electroporation and whole embryo culture. Differentiation, 2004, 72, 92-102.	1.0	28
34	Bioelectric State and Cell Cycle Control of Mammalian Neural Stem Cells. Stem Cells International, 2012, 2012, 1-10.	1.2	27
35	Epitranscriptomics: A New Regulatory Mechanism of Brain Development and Function. Frontiers in Neuroscience, 2018, 12, 85.	1.4	27
36	Autonomic Function in Hypertension. Circulation: Cardiovascular Genetics, 2009, 2, 46-56.	5.1	26

#	Article	IF	CITATIONS
37	<i>De novo</i> DNA methylation controls neuronal maturation during adult hippocampal neurogenesis. EMBO Journal, 2021, 40, e107100.	3.5	24
38	Efficient Transient Genetic Manipulation In Vitro and In Vivo by Prototype Foamy Virus-mediated Nonviral RNA Transfer. Molecular Therapy, 2014, 22, 1460-1471.	3.7	22
39	Adultâ€born neurons promote cognitive flexibility by improving memory precision and indexing. Hippocampus, 2021, 31, 1068-1079.	0.9	20
40	Assessment and site-specific manipulation of DNA (hydroxy-)methylation during mouse corticogenesis. Life Science Alliance, 2019, 2, e201900331.	1.3	20
41	Generation and characterization of Neurod1â€CreER ^{T2} mouse lines for the study of embryonic and adult neurogenesis. Genesis, 2014, 52, 870-878.	0.8	18
42	Cyclin-Dependent Kinase-Dependent Phosphorylation of Sox2 at Serine 39 Regulates Neurogenesis. Molecular and Cellular Biology, 2017, 37, .	1.1	18
43	Expansion of Embryonic and Adult Neural Stem Cells by In Utero Electroporation or Viral Stereotaxic Injection. Journal of Visualized Experiments, 2012, , .	0.2	16
44	Identification and expression patterns of novel long non-coding RNAs in neural progenitors of the developing mammalian cortex. Neurogenesis (Austin, Tex), 2015, 2, e995524.	1.5	15
45	Implementation of biohybrid olfactory bulb on a high-density CMOS-chip to reveal large-scale spatiotemporal circuit information. Biosensors and Bioelectronics, 2022, 198, 113834.	5.3	14
46	SARA regulates neuronal migration during neocortical development through L1 trafficking. Development (Cambridge), 2016, 143, 3143-53.	1.2	13
47	Repression of Irs2 by letâ€7 mi <scp>RNA</scp> s is essential for homeostasis of the telencephalic neuroepithelium. EMBO Journal, 2020, 39, e105479.	3.5	12
48	Lentiviruses allow widespread and conditional manipulation of gene expression in the developing mouse brain. Development (Cambridge), 2013, 140, 2818-2822.	1.2	11
49	MicroRNA profiling of mouse cortical progenitors and neurons reveals miR-486-5p as a regulator of neurogenesis. Development (Cambridge), 2020, 147, .	1.2	11
50	Tcf12 and NeuroD1 cooperatively drive neuronal migration during cortical development. Development (Cambridge), 2022, 149, .	1.2	11
51	The neuroendocrine protein VGF is sorted into dense-core granules and is secreted apically by polarized rat thyroid epithelial cells. Experimental Cell Research, 2004, 295, 269-280.	1.2	10
52	Cell cycle activity of neural precursors in the diseased mammalian brain. Frontiers in Neuroscience, 2014, 8, 39.	1.4	10
53	Sequence and expression levels of circular RNAs in progenitor cell types during mouse corticogenesis. Life Science Alliance, 2019, 2, e201900354.	1.3	10
54	Phf21b imprints the spatiotemporal epigenetic switch essential for neural stem cell differentiation. Genes and Development, 2020, 34, 1190-1209.	2.7	9

#	Article	IF	Citations
55	CyclinD2 at the edge: splitting up cell fate. EMBO Journal, 2012, 31, 1850-1852.	3.5	5
56	Cyclin D1 Again Caught in the Act: Dyrk1a Links G1 and Neurogenesis in Down Syndrome. EBioMedicine, 2015, 2, 96-97.	2.7	5
57	Identification of Tox chromatin binding properties and downstream targets by DamID-Seq. Genomics Data, 2016, 7, 264-268.	1.3	5
58	A Nuclear Belt Fastens on Neural Cell Fate. Cells, 2022, 11, 1761.	1.8	5
59	Microâ€ <scp>RNA</scp> s meet epigenetics to make for better brains. EMBO Reports, 2014, 15, 1224-1225.	2.0	2
60	Response to letter by Lenos and Tsaniklidou. Trends in Cell Biology, 2010, 20, 578.	3.6	1
61	Neural Stem Cells. , 2016, , 169-208.		1
62	RNA interference in postimplantation mouse embryos., 2005,, 207-219.		O
63	Tossed out to save the masses. Science, 2014, 346, 1298-1299.	6.0	O
64	Neural Stem Cells. , 2011, , 287-326.		0
65	Acute RNA Interference for Basic Research and Therapy. , 2011, , 1-16.		O
66	Overexpression of cdk4 and cyclinD1 triggers greater expansion of neural stem cells in the adult mouse brain. Journal of Cell Biology, 2011, 193, i5-i5.	2.3	0
67	Neural Stem Cells. , 2013, , 297-335.		O
68	CCND1–CDK4–mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo. Journal of Cell Biology, 2015, 210, 2102OIA144.	2.3	0