
Philippe Besnard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4168487/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature, 2012, 483, 350-354.	27.8	572
2	CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. Journal of Clinical Investigation, 2005, 115, 3177-3184.	8.2	546
3	Dietary trans-10,cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. Journal of Lipid Research, 2002, 43, 1400-1409.	4.2	308
4	Identification of a Bile Acid-responsive Element in the Human Ileal Bile Acid-binding Protein Gene. Journal of Biological Chemistry, 1999, 274, 29749-29754.	3.4	307
5	The gustatory pathway is involved in CD36â€mediated orosensory perception of longâ€chain fatty acids in the mouse. FASEB Journal, 2008, 22, 1458-1468.	0.5	199
6	Taste of Fat: A Sixth Taste Modality?. Physiological Reviews, 2016, 96, 151-176.	28.8	191
7	Localization and Regulation of the Putative Membrane Fattyâ€Acid Transporter (FAT) in the Small Intestine. FEBS Journal, 1996, 238, 368-373.	0.2	188
8	CD36- and GPR120-Mediated Ca2+ Signaling in Human Taste Bud Cells Mediates Differential Responses to Fatty Acids and Is Altered inÂObese Mice. Gastroenterology, 2014, 146, 995-1005.e5.	1.3	166
9	Linoleic Acid Induces Calcium Signaling, Src Kinase Phosphorylation, and Neurotransmitter Release in Mouse CD36-positive Gustatory Cells. Journal of Biological Chemistry, 2008, 283, 12949-12959.	3.4	161
10	Differential involvement of peroxisome-proliferator-activated receptors \hat{I}_{\pm} and \hat{I}' in fibrate and fatty-acid-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine. Biochemical Journal, 2001, 355, 481-488.	3.7	141
11	The Lipid-Sensor Candidates CD36 and GPR120 Are Differentially Regulated by Dietary Lipids in Mouse Taste Buds: Impact on Spontaneous Fat Preference. PLoS ONE, 2011, 6, e24014.	2.5	136
12	CD36 as a lipid sensor. Physiology and Behavior, 2011, 105, 36-42.	2.1	129
13	Chronic high-fat diet affects intestinal fat absorption and postprandial triglyceride levels in the mouse. Journal of Lipid Research, 2007, 48, 278-287.	4.2	117
14	Intestinal absorption of long-chain fatty acids: Evidence and uncertainties. Progress in Lipid Research, 2009, 48, 101-115.	11.6	112
15	Luminal Lipid Regulates CD36 Levels and Downstream Signaling to Stimulate Chylomicron Synthesis. Journal of Biological Chemistry, 2011, 286, 25201-25210.	3.4	110
16	Lipopolysaccharides-Mediated Increase in Glucose-Stimulated Insulin Secretion: Involvement of the GLP-1 Pathway. Diabetes, 2014, 63, 471-482.	0.6	109
17	Differential involvement of peroxisome-proliferator-activated receptors \hat{I}_{\pm} and \hat{I}' in fibrate and fatty-acid-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine. Biochemical Journal, 2001, 355, 481.	3.7	99
18	New insights into the fatty acid-binding protein (FABP) family in the small intestine. Molecular and Cellular Biochemistry, 2002, 239, 139-147.	3.1	98

PHILIPPE BESNARD

#	Article	IF	CITATIONS
19	Oro-sensory perception of dietary lipids: New insights into the fat taste transduction. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 149-155.	2.4	93
20	Regulation of expression of human intestinal bile acid-binding protein in Caco-2 cells. Biochemical Journal, 1998, 330, 261-265.	3.7	90
21	Lipid-mediated release of GLP-1 by mouse taste buds from circumvallate papillae: putative involvement of GPR120 and impact on taste sensitivity. Journal of Lipid Research, 2012, 53, 2256-2265.	4.2	87
22	Hyperinsulinaemia triggered by dietary conjugated linoleic acid is associated with a decrease in leptin and adiponectin plasma levels and pancreatic beta cell hyperplasia in the mouse. Diabetologia, 2005, 48, 1059-1065.	6.3	86
23	Statin Induction of Liver Fatty Acid-Binding Protein (L-FABP) Gene Expression Is Peroxisome Proliferator-activated Receptor-α-dependent. Journal of Biological Chemistry, 2004, 279, 45512-45518.	3.4	84
24	CD36 is involved in lycopene and lutein uptake by adipocytes and adipose tissue cultures. Molecular Nutrition and Food Research, 2011, 55, 578-584.	3.3	82
25	Induction of the Fatty Acid Transport Protein 1 and Acyl-CoA Synthase Genes by Dimer-selective Rexinoids Suggests That the Peroxisome Proliferator-activated Receptor-Retinoid X Receptor Heterodimer Is Their Molecular Target. Journal of Biological Chemistry, 2000, 275, 12612-12618.	3.4	73
26	STIM1 regulates calcium signaling in taste bud cells and preference for fat in mice. Journal of Clinical Investigation, 2012, 122, 2267-2282.	8.2	67
27	Obesity alters the gustatory perception of lipids in the mouse: plausible involvement of lingual CD36. Journal of Lipid Research, 2013, 54, 2485-2494.	4.2	66
28	From fatty-acid sensing to chylomicron synthesis: Role of intestinal lipid-binding proteins. Biochimie, 2014, 96, 37-47.	2.6	66
29	Obesity interferes with the orosensory detection of long-chain fatty acids in humans. American Journal of Clinical Nutrition, 2014, 99, 975-983.	4.7	59
30	Hormone-sensitive Lipase Is a Cholesterol Esterase of the Intestinal Mucosa. Journal of Biological Chemistry, 2003, 278, 6510-6515.	3.4	52
31	CD36 and taste of fat. Current Opinion in Clinical Nutrition and Metabolic Care, 2012, 15, 107-111.	2.5	51
32	Molecular Mechanisms of Fat Preference and Overeating. Annals of the New York Academy of Sciences, 2008, 1141, 163-175.	3.8	50
33	Ca2+ signaling in taste bud cells and spontaneous preference for fat: Unresolved roles of CD36 and GPR120. Biochimie, 2014, 96, 8-13.	2.6	50
34	Do we taste fat?. Biochimie, 2007, 89, 265-269.	2.6	44
35	New insights into the fatty acid-binding protein (FABP) family in the small intestine. Molecular and Cellular Biochemistry, 2002, 239, 139-47.	3.1	36
36	The oral lipid sensor GPR120 is not indispensable for the orosensory detection of dietary lipids in mice. Journal of Lipid Research, 2015, 56, 369-378.	4.2	32

Philippe Besnard

#	Article	IF	CITATIONS
37	Obese Subjects With Specific Gustatory Papillae Microbiota and Salivary Cues Display an Impairment to Sense Lipids. Scientific Reports, 2018, 8, 6742.	3.3	32
38	Deregulated Lipid Sensing by Intestinal CD36 in Diet-Induced Hyperinsulinemic Obese Mouse Model. PLoS ONE, 2016, 11, e0145626.	2.5	32
39	Evidence for Transcriptional Induction of the Liver Fatty-Acid-Binding-Protein Gene by Bezafibrate in the Small Intestine. FEBS Journal, 1995, 227, 801-807.	0.2	31
40	ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. FASEB Journal, 2016, 30, 3489-3500.	0.5	30
41	Lipids and obesity: Also a matter of taste?. Reviews in Endocrine and Metabolic Disorders, 2016, 17, 159-170.	5.7	29
42	Indirect dexamethasone down-regulation of the liver fatty acid-binding protein expression in rat liver. Lipids and Lipid Metabolism, 1998, 1391, 204-212.	2.6	28
43	Additive effects of dexamethasone and calcium on the calcitonin mRNA level in adrenalectomized rats. FEBS Letters, 1989, 258, 293-296.	2.8	27
44	Cellular and molecular aspects of fat metabolism in the small intestine. Proceedings of the Nutrition Society, 1996, 55, 19-37.	1.0	27
45	Sterol Regulatory Element-binding Protein-1c Is Responsible for Cholesterol Regulation of Ileal Bile Acid-binding Protein Gene in Vivo. Journal of Biological Chemistry, 2002, 277, 1324-1331.	3.4	27
46	Title is missing!. Molecular and Cellular Biochemistry, 2002, 239, 149-155.	3.1	23
47	Link between Intestinal CD36 Ligand Binding and Satiety Induced by a High Protein Diet in Mice. PLoS ONE, 2012, 7, e30686.	2.5	22
48	FXRE can function as an LXRE in the promoter of human ileal bile acid-binding protein (I-BABP) gene. FEBS Letters, 2003, 553, 299-303.	2.8	21
49	Is the taste of fat regulated?. Biochimie, 2014, 96, 3-7.	2.6	21
50	Research of anin vitro model to study the expression of fatty acid-binding proteins in the small intestine. Molecular and Cellular Biochemistry, 1993, 123, 85-92.	3.1	18
51	Lack of Association of <i>CD36</i> SNPs With Early Onset Obesity: A Metaâ€Analysis in 9,973 European Subjects. Obesity, 2011, 19, 833-839.	3.0	18
52	A Preventive Prebiotic Supplementation Improves the Sweet Taste Perception in Diet-Induced Obese Mice. Nutrients, 2019, 11, 549.	4.1	17
53	Identification of an oral microbiota signature associated with an impaired orosensory perception of lipids in insulin-resistant patients. Acta Diabetologica, 2020, 57, 1445-1451.	2.5	13
54	Appetite control by the tongue-gut axis and evaluation of the role of CD36/SR-B2. Biochimie, 2017, 136, 27-32.	2.6	12

PHILIPPE BESNARD

#	Article	IF	CITATIONS
55	A chronic LPS-induced low-grade inflammation fails to reproduce in lean mice the impairment of preference for oily solution found in diet-induced obese mice. Biochimie, 2019, 159, 112-121.	2.6	11
56	Orosensory Perception of Fat/Sweet Stimuli and Appetite-Regulating Peptides before and after Sleeve Gastrectomy or Gastric Bypass in Adult Women with Obesity. Nutrients, 2021, 13, 878.	4.1	10
57	Cell mechanisms of gustatory lipids perception and modulation of the dietary fat preference. Biochimie, 2014, 107, 11-14.	2.6	9
58	Fatty taste variability in obese subjects: the oral microbiota hypothesis. OCL - Oilseeds and Fats, Crops and Lipids, 2020, 27, 38.	1.4	9
59	The Study of Social Taste Through First Names: Comment on Lieberson and Bell. American Journal of Sociology, 1995, 100, 1313-1317.	0.5	8
60	Output of liver fatty acid-binding protein (L-FABP) in bile. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1999, 1436, 593-599.	2.4	8
61	Absorption intestinale desÂacides gras: faits etÂincertitudes. Nutrition Clinique Et Metabolisme, 2007, 21, 38-45.	0.5	8
62	Contribution of rare coding mutations in CD36 to type 2 diabetes and cardio-metabolic complications. Scientific Reports, 2019, 9, 17123.	3.3	8
63	The Tryptophan/Kynurenine Pathway: A Novel Cross-Talk between Nutritional Obesity, Bariatric Surgery and Taste of Fat. Nutrients, 2021, 13, 1366.	4.1	8
64	Evidence for Transcriptional Induction of the Liver Fattyâ€Acidâ€Bindingâ€Protein Gene by Bezafibrate in the Small Intestine. FEBS Journal, 1995, 227, 801-807.	0.2	7
65	Intestinal uptake and transport of fatty acids. Advances in Molecular and Cell Biology, 2003, 33, 9-28.	0.1	5
66	CLA-Enriched Diet Containing t10,c12-CLA Alters Bile Acid Homeostasis and Increases the Risk of Cholelithiasis in Mice. Journal of Nutrition, 2011, 141, 1437-1444.	2.9	5
67	A New Method for Studying Licking Behavior Determinants in Rodents: Application to Dietâ€Induced Obese Mice. Obesity, 2018, 26, 1905-1914.	3.0	4
68	Diet-Induced Obesity Alters the Circadian Expression of Clock Genes in Mouse Gustatory Papillae. Frontiers in Physiology, 2020, 11, 726.	2.8	4
69	Intestinal Fat Absorption: Roles of Intracellular Lipid-Binding Proteins and Peroxisome Proliferator-Activated Receptors. , 0, , 359-381.		2
70	Sur la piste du « goût du gras ». Oleagineux Corps Gras Lipides, 2006, 13, 309-314.	0.2	1
71	Sensing of lipids <i>via</i> receptor signalling in taste buds. European Journal of Lipid Science and Technology, 2008, 110, 379-380.	1.5	1
72	RÃ1e des lipides dans la régulation du comportement alimentaire. Oleagineux Corps Gras Lipides, 2008, 15, 275-278.	0.2	1

Philippe Besnard

#	Article	IF	CITATIONS
73	Mécanisme d'absorption intestinale des acides gras à longue chaîne : rÃ1e émergent du CD36. Oleagineux Corps Gras Lipides, 2012, 19, 200-208.	0.2	1
74	Mécanisme d'absorption intestinale des acides gras à longue chaîneÂ: rÃ1e émergent du CD36. Cahiers Nutrition Et De Dietetique, 2012, 47, 272-279.	s De 0.3	1
75	Perception oro-sensorielle des lipides alimentaires et obésité. OCL - Oilseeds and Fats, Crops and Lipids, 2016, 23, D308.	1.4	1
76	Regulation of the ileal bile acid-binding protein gene: An approach to determine its physiological function(s). , 2002, , 149-155.		1
77	Taste-Driven Responsiveness to Fat and Sweet Stimuli in Mouse Models of Bariatric Surgery. Biomedicines, 2022, 10, 741.	3.2	1
78	"Entero-Sensory―Detection of Foodstuffs. Digestive Diseases and Sciences, 2013, 58, 5-7.	2.3	0
79	Variabilité de la perception orosensorielle des lipides chez les sujets obèsesÂ: l'hypothèse du microbiote buccal. Cahiers De Nutrition Et De Dietetique, 2021, 56, 292-292.	0.3	0