Michael Taylor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4168422/publications.pdf

Version: 2024-02-01

933447 794594 19 638 10 19 citations h-index g-index papers 21 21 21 769 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Low Porosity Metallic Periodic Structures with Negative Poisson's Ratio. Advanced Materials, 2014, 26, 2365-2370.	21.0	208
2	Effect of Wrinkles on the Surface Area of Graphene: Toward the Design of Nanoelectronics. Nano Letters, 2014, 14, 6520-6525.	9.1	81
3	Spatial resolution of wrinkle patterns in thin elastic sheets at finite strain. Journal of the Mechanics and Physics of Solids, 2014, 62, 163-180.	4.8	80
4	A two-dimensional peridynamic model for thin plates. Mathematics and Mechanics of Solids, 2015, 20, 998-1010.	2.4	56
5	A comparative analysis of numerical approaches to the mechanics of elastic sheets. Journal of the Mechanics and Physics of Solids, 2015, 79, 92-107.	4.8	44
6	An Investigation of the Enhanced Fatigue Performance of Low-porosity Auxetic Metamaterials. Experimental Mechanics, 2020, 60, 93-107.	2.0	30
7	Static and Modal Analysis of Low Porosity Thin Metallic Auxetic Structures Using Speckle Interferometry and Digital Image Correlation. Experimental Mechanics, 2018, 58, 283-300.	2.0	29
8	Peridynamic Modeling of Ruptures in Biomembranes. PLoS ONE, 2016, 11, e0165947.	2.5	22
9	Variable Poisson's ratio materials for globally stable static and dynamic compression resistance. Extreme Mechanics Letters, 2019, 26, 1-7.	4.1	22
10	Simulation of Laminated Thermoelastic Membranes. Journal of Thermal Stresses, 2009, 32, 448-476.	2.0	17
11	Helical locomotion in a porous medium. Physical Review E, 2020, 102, 043111.	2.1	10
12	Entropic thermoelasticity of thin polymeric films. Acta Mechanica, 2006, 183, 1-22.	2.1	9
13	Finite elastic wrinkling deformations of incompressible fiber-reinforced plates. International Journal of Engineering Science, 2019, 144, 103138.	5.0	9
14	An Investigation of Stress Concentration, Crack Nucleation, and Fatigue Life of Thin Low Porosity Metallic Auxetic Structures. Conference Proceedings of the Society for Experimental Mechanics, 2019, , 65-71.	0.5	6
15	Design of low-porosity auxetic tessellations with reduced mechanical stress concentrations. Extreme Mechanics Letters, 2021, 48, 101401.	4.1	4
16	An assessment of acoustic contrast between long and short vowels using convex hulls. Journal of the Acoustical Society of America, 2014, 136, 883-891.	1.1	3
17	A cellular automaton for modeling non-trivial biomembrane ruptures. Soft Matter, 2019, 15, 4178-4186.	2.7	3
18	Simulation of wrinkling in incompressible anisotropic thin sheets with wavy fibers. International Journal of Non-Linear Mechanics, 2020, 127, 103610.	2.6	3

#	ARTICLE	IF	CITATIONS
19	A Novel Auxetic Structure with Enhanced Impact Performance by Means of Periodic Tessellation with Variable Poisson's Ratio. Conference Proceedings of the Society for Experimental Mechanics, 2019, , 211-218.	0.5	O