
Sandra M Herrmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4167503/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine, 2019, 47, 446-456.	2.7	697
2	Clinical Features and Outcomes of Immune Checkpoint Inhibitor–Associated AKI: A Multicenter Study. Journal of the American Society of Nephrology: JASN, 2020, 31, 435-446.	3.0	247
3	Vascular toxicities with VEGF inhibitor therapies–focus on hypertension and arterial thrombotic events. Journal of the American Society of Hypertension, 2018, 12, 409-425.	2.3	141
4	Programmed cell death protein 1 inhibitor treatment is associated with acute kidney injury and hypocalcemia: meta-analysis. Nephrology Dialysis Transplantation, 2019, 34, 108-117.	0.4	137
5	Autologous Mesenchymal Stem Cells Increase Cortical Perfusion in Renovascular Disease. Journal of the American Society of Nephrology: JASN, 2017, 28, 2777-2785.	3.0	121
6	A Mitochondrial Permeability Transition Pore Inhibitor Improves Renal Outcomes After Revascularization in Experimental Atherosclerotic Renal Artery Stenosis. Hypertension, 2012, 60, 1242-1249.	1.3	113
7	Acute kidney injury in patients treated with immune checkpoint inhibitors. , 2021, 9, e003467.		103
8	Associations of rotational shift work and night shift status with hypertension. Journal of Hypertension, 2017, 35, 1929-1937.	0.3	100
9	Myeloproliferative neoplasms cause glomerulopathy. Kidney International, 2011, 80, 753-759.	2.6	93
10	Phase 2a Clinical Trial of Mitochondrial Protection (Elamipretide) During Stent Revascularization in Patients With Atherosclerotic Renal Artery Stenosis. Circulation: Cardiovascular Interventions, 2017, 10, .	1.4	77
11	Stent Revascularization Restores Cortical Blood Flow and Reverses Tissue Hypoxia in Atherosclerotic Renal Artery Stenosis but Fails to Reverse Inflammatory Pathways or Glomerular Filtration Rate. Circulation: Cardiovascular Interventions, 2013, 6, 428-435.	1.4	76
12	Urinary Albumin Excretion Patterns of Patients with Cast Nephropathy and Other Monoclonal Gammopathy–Related Kidney Diseases. Clinical Journal of the American Society of Nephrology: CJASN, 2012, 7, 1964-1968.	2.2	72
13	Immune Checkpoint Inhibitors and Immune-Related Adverse Renal Events. Kidney International Reports, 2020, 5, 1139-1148.	0.4	71
14	Urinary Mitochondrial DNA Copy Number Identifies Chronic Renal Injury in Hypertensive Patients. Hypertension, 2016, 68, 401-410.	1.3	69
15	TGF Expression and Macrophage Accumulation in Atherosclerotic Renal Artery Stenosis. Clinical Journal of the American Society of Nephrology: CJASN, 2013, 8, 546-553.	2.2	60
16	Serum cystatin C predicts vancomycin trough levels better than serum creatinine in hospitalized patients: a cohort study. Critical Care, 2014, 18, R110.	2.5	60
17	Current Concepts in the Treatment of Renovascular Hypertension. American Journal of Hypertension, 2018, 31, 139-149.	1.0	59
18	Hypertension and Prohypertensive Antineoplastic Therapies in Cancer Patients. Circulation Research, 2021, 128, 1040-1061.	2.0	59

SANDRA M HERRMANN

#	Article	IF	CITATIONS
19	Management of atherosclerotic renovascular disease after Cardiovascular Outcomes in Renal Atherosclerotic Lesions (CORAL). Nephrology Dialysis Transplantation, 2015, 30, 366-375.	0.4	58
20	Biomarkers, Clinical Features, and Rechallenge for Immune Checkpoint Inhibitor Renal Immune-Related Adverse Events. Kidney International Reports, 2021, 6, 1022-1031.	0.4	54
21	Renovascular Hypertension. Endocrinology and Metabolism Clinics of North America, 2019, 48, 765-778.	1.2	52
22	Systematic Review of the Safety of Immune Checkpoint Inhibitors Among Kidney Transplant Patients. Kidney International Reports, 2020, 5, 149-158.	0.4	52
23	In a Phase 1a escalating clinical trial, autologous mesenchymal stem cell infusion for renovascularÂdisease increases blood flow andÂtheÂglomerular filtration rate while reducing inflammatory biomarkers and blood pressure. Kidney International, 2020, 97, 793-804.	2.6	42
24	Acute Interstitial Nephritis and Checkpoint Inhibitor Therapy. Kidney360, 2020, 1, 16-24.	0.9	42
25	Acute Kidney Injury in Severe COVID-19 Has Similarities to Sepsis-Associated Kidney Injury. Mayo Clinic Proceedings, 2021, 96, 2561-2575.	1.4	41
26	Biomarkers of Kidney Injury and Klotho in Patients with Atherosclerotic Renovascular Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 443-451.	2.2	37
27	Senescence marker activin A is increased in human diabetic kidney disease: association with kidney function and potential implications for therapy. BMJ Open Diabetes Research and Care, 2019, 7, e000720.	1.2	36
28	Determination of Single-Kidney Glomerular Filtration Rate in Human Subjects by Using CT. Radiology, 2015, 276, 490-498.	3.6	32
29	Tissue hypoxia, inflammation, and loss of glomerular filtration rate in human atherosclerotic renovascular disease. Kidney International, 2019, 95, 948-957.	2.6	29
30	Differences in GFR and Tissue Oxygenation, and Interactions between Stenotic and Contralateral Kidneys in Unilateral Atherosclerotic Renovascular Disease. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 458-469.	2.2	28
31	Adipose-derived mesenchymal stem cells from patients with atherosclerotic renovascular disease have increased DNA damage and reduced angiogenesis that can be modified by hypoxia. Stem Cell Research and Therapy, 2016, 7, 128.	2.4	27
32	Renal Tubular Acidosis and Immune Checkpoint Inhibitor Therapy: An Immune-Related Adverse Event of PD-1 Inhibitor—A Report of 3 Cases. Kidney Medicine, 2020, 2, 657-662.	1.0	26
33	Immune Checkpoint Inhibitors and Kidney Toxicity: Advances in Diagnosis and Management. Kidney Medicine, 2021, 3, 1074-1081.	1.0	26
34	Membranous nephropathy. Current Opinion in Nephrology and Hypertension, 2012, 21, 203-210.	1.0	25
35	Renal Vein Levels of MicroRNA-26a Are Lower in the Poststenotic Kidney. Journal of the American Society of Nephrology: JASN, 2015, 26, 1378-1388.	3.0	25
36	Increased Circulating Inflammatory Endothelial Cells in Blacks With Essential Hypertension. Hypertension, 2013, 62, 585-591.	1.3	24

#	Article	IF	CITATIONS
37	Hypoxic preconditioning induces epigenetic changes and modifies swine mesenchymal stem cell angiogenesis and senescence in experimental atherosclerotic renal artery stenosis. Stem Cell Research and Therapy, 2021, 12, 240.	2.4	22
38	Circulating and renal vein levels of microRNAs in patients with renal artery stenosis. Nephrology Dialysis Transplantation, 2015, 30, 480-490.	0.4	20
39	Atherosclerotic renal artery stenosis is associated with elevated cell cycle arrest markers related to reduced renal blood flow and postcontrast hypoxia. Nephrology Dialysis Transplantation, 2016, 31, 1855-1863.	0.4	20
40	Changes in inflammatory biomarkers after renal revascularization in atherosclerotic renal artery stenosis. Nephrology Dialysis Transplantation, 2016, 31, 1437-1443.	0.4	19
41	Clinical outcomes of solid organ transplant recipients with metastatic cancers who are treated with immune checkpoint inhibitors: A singleâ€center analysis. Cancer, 2020, 126, 4780-4787.	2.0	19
42	Capmatinib-Induced Pseudo–Acute Kidney Injury: A Case Report. American Journal of Kidney Diseases, 2022, 79, 120-124.	2.1	19
43	Systematic Review of Risk factors and Incidence of Acute Kidney Injury Among Patients Treated with CAR-T Cell Therapies. Kidney International Reports, 2021, 6, 1416-1422.	0.4	17
44	A Systematic Review and Meta-Analysis of Cell-Based Interventions in Experimental Diabetic Kidney Disease. Stem Cells Translational Medicine, 2021, 10, 1304-1319.	1.6	17
45	Adenovirus-Induced Interstitial Nephritis Following Umbilical Cord Blood Transplant for Chronic Lymphocytic Leukemia. American Journal of Kidney Diseases, 2012, 59, 886-890.	2.1	16
46	The â€~other' big complication: how chronic kidney disease impacts on cancer risks and outcomes. Nephrology Dialysis Transplantation, 2023, 38, 1071-1079.	0.4	16
47	Clinicopathologic Features of Acute Kidney Injury Associated With CDK4/6 Inhibitors. Kidney International Reports, 2022, 7, 618-623.	0.4	16
48	Chronic Renal Ischemia in Humans: Can Cell Therapy Repair the Kidney in Occlusive Renovascular Disease?. Physiology, 2015, 30, 175-182.	1.6	15
49	Preserved Function of Late-Outgrowth Endothelial Cells in Medically Treated Hypertensive Patients Under Well-Controlled Conditions. Hypertension, 2014, 64, 808-814.	1.3	14
50	New-Onset Heart Failure in Association With Severe Hypertension During Trastuzumab Therapy. Mayo Clinic Proceedings, 2014, 89, 1734-1739.	1.4	13
51	Successful Treatment of Pembrolizumab-Induced Severe Capillary Leak Syndrome and Lymphatic Capillary Dysfunction. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2021, 5, 670-674.	1.2	13
52	Progress toward the Clinical Application of Mesenchymal Stromal Cells and Other Disease-Modulating Regenerative Therapies: Examples from the Field of Nephrology. Kidney360, 2021, 2, 542-557.	0.9	12
53	Diabetic Kidney Disease Alters the Transcriptome and Function of Human Adipose-Derived Mesenchymal Stromal Cells but Maintains Immunomodulatory and Paracrine Activities Important for Renal Repair. Diabetes, 2021, 70, 1561-1574.	0.3	12
54	Recurrence of monoclonal IgA lambda glomerulonephritis in kidney allograft associated with multiple myeloma. Clinical Nephrology, 2015, 84 (2015), 241-246.	0.4	12

SANDRA M HERRMANN

#	Article	IF	CITATIONS
55	Association between urologic malignancies and endâ€stage renal disease: A metaâ€analysis. Nephrology, 2019, 24, 65-73.	0.7	10
56	Total Renal Artery Occlusion: Recovery of Function After Revascularization. American Journal of Kidney Diseases, 2018, 71, 748-753.	2.1	9
57	Incidence and Risk Factors for Acute Kidney Injury After Chimeric Antigen Receptor T-Cell Therapy. Mayo Clinic Proceedings, 2022, 97, 1294-1304.	1.4	9
58	Is Rechallenge Appropriate in Patients that Develop Immune Checkpoint Inhibitor-Associated AKI?: PRO. Kidney360, 2022, 3, 799-802.	0.9	8
59	Proteinuria is common among HIV patients: what are we missing?. Clinics, 2015, 70, 691-695.	0.6	8
60	Evidence and Renovascular Disease: Trials and Mistrials?. American Journal of Kidney Diseases, 2017, 70, 160-163.	2.1	7
61	New onset hypertension following abrupt discontinuation of citalopram. Clinical Nephrology, 2013, 82, 202-4.	0.4	7
62	Immune Check Point Inhibitor–Associated Endothelialitis. Kidney International Reports, 2020, 5, 1371-1374.	0.4	6
63	Nail-patella-like renal disease masquerading as Fabry disease on kidney biopsy: a case report. BMC Nephrology, 2020, 21, 341.	0.8	6
64	Renal Revascularization Attenuates Myocardial Mitochondrial Damage and Improves Diastolic Function in Pigs with Metabolic Syndrome and Renovascular Hypertension. Journal of Cardiovascular Translational Research, 2022, 15, 15-26.	1.1	6
65	Self-reported Financial Conflict of Interest in Nephrology Clinical Practice Guidelines. Kidney International Reports, 2021, 6, 768-774.	0.4	5
66	Renal Ischemia Induces Epigenetic Changes in Apoptotic, Proteolytic, and Mitochondrial Genes in Swine Scattered Tubular-like Cells. Cells, 2022, 11, 1803.	1.8	5
67	Renal injury in the setting of immune checkpoint inhibitor: Report of a case of hypothyroidism and the role of positron emission tomography. Journal of Onco-Nephrology, 2020, 4, 112-116.	0.3	4
68	Ribociclib-Induced Pseudo-Acute Kidney Injury. Journal of Onco-Nephrology, 0, , 239936932210852.	0.3	4
69	Younger Adults Initiating Hemodialysis: Antidepressant Use for Depression Associated With Higher Health Care Utilization. Mayo Clinic Proceedings, 2018, 93, 321-332.	1.4	3
70	SP037PD-L1 STAINING DOES NOT DISTINGUISH INTERSTITIAL NEPHRITIS SECONDARY TO IMMUNE CHECKPOINT INHIBITORS. Nephrology Dialysis Transplantation, 2018, 33, i358-i358.	0.4	2
71	Monoclonal Gammopathy–Related Kidney Diseases. Advances in Chronic Kidney Disease, 2022, 29, 86-102.e1.	0.6	1
72	The Case An unusual cause of tender skin lesion in an end-stage kidney disease patient. Kidney International, 2021, 99, 275-276.	2.6	0

#	Article	IF	CITATIONS
73	MO1037WOMEN REPRESENTATION IN CLINICAL PRACTICE GUIDELINES AMONG MAJOR NEPHROLOGY GUIDELINES. Nephrology Dialysis Transplantation, 2021, 36, .	0.4	0