Nora Bengoa-Vergniory

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4167298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	REST Protects Dopaminergic Neurons from Mitochondrial and α-Synuclein Oligomer Pathology in an Alpha Synuclein Overexpressing BAC-Transgenic Mouse Model. Journal of Neuroscience, 2021, 41, 3731-3746.	3.6	15
2	Striatal Dopamine Transporter Function Is Facilitated by Converging Biology of α-Synuclein and Cholesterol. Frontiers in Cellular Neuroscience, 2021, 15, 658244.	3.7	18
3	LAC3 is not expressed in human and murine neurons and does not modulate αâ€synucleinopathies. EMBO Molecular Medicine, 2021, 13, e14745.	6.9	44
4	Tau-proximity ligation assay reveals extensive previously undetected pathology prior to neurofibrillary tangles in preclinical Alzheimer's disease. Acta Neuropathologica Communications, 2021, 9, 18.	5.2	23
5	CLR01 protects dopaminergic neurons in vitro and in mouse models of Parkinson's disease. Nature Communications, 2020, 11, 4885.	12.8	39
6	GABA uptake transporters support dopamine release in dorsal striatum with maladaptive downregulation in a parkinsonism model. Nature Communications, 2020, 11, 4958.	12.8	31
7	Transgenic Mice Expressing Human α-Synuclein in Noradrenergic Neurons Develop Locus Ceruleus Pathology and Nonmotor Features of Parkinson's Disease. Journal of Neuroscience, 2020, 40, 7559-7576.	3.6	32
8	Impairment of Macroautophagy in Dopamine Neurons Has Opposing Effects on Parkinsonian Pathology and Behavior. Cell Reports, 2019, 29, 920-931.e7.	6.4	29
9	Selective vulnerability in α-synucleinopathies. Acta Neuropathologica, 2019, 138, 681-704.	7.7	58
10	Alpha-Synuclein Proximity Ligation Assay (AS-PLA) in Brain Sections to Probe for Alpha-Synuclein Oligomers. Methods in Molecular Biology, 2019, 1948, 69-76.	0.9	16
11	Cellular α-synuclein pathology is associated with bioenergetic dysfunction in Parkinson's iPSC-derived dopamine neurons. Human Molecular Genetics, 2019, 28, 2001-2013.	2.9	102
12	Targeting Alpha-Synuclein as a Therapy for Parkinson's Disease. Frontiers in Molecular Neuroscience, 2019, 12, 299.	2.9	215
13	Detection of alphaâ€synuclein conformational variants from gastroâ€intestinal biopsy tissue as a potential biomarker for Parkinson's disease. Neuropathology and Applied Neurobiology, 2018, 44, 722-736.	3.2	39
14	Increased 4R tau expression and behavioural changes in a novel MAPT-N296H genomic mouse model of tauopathy. Scientific Reports, 2017, 7, 43198.	3.3	13
15	Loss of MicroRNA-7 Regulation Leads to α-Synuclein Accumulation and Dopaminergic Neuronal Loss InÂVivo. Molecular Therapy, 2017, 25, 2404-2414.	8.2	101
16	Alpha-synuclein oligomers: a new hope. Acta Neuropathologica, 2017, 134, 819-838.	7.7	260
17	Identification of Noncanonical Wnt Receptors Required for Wnt-3a-Induced Early Differentiation of Human Neural Stem Cells. Molecular Neurobiology, 2017, 54, 6213-6224.	4.0	14
18	Preclinical development of a vaccine against oligomeric alpha-synuclein based on virus-like particles. PLoS ONE, 2017, 12, e0181844.	2.5	27

#	Article	IF	CITATIONS
19	The stem cell cocktail: neural reprogramming just got easier. Stem Cell Investigation, 2016, 3, 55-55.	3.0	0
20	Dickkopf-3 regulates prostate epithelial cell acinar morphogenesis and prostate cancer cell invasion by limiting TGF-β-dependent activation of matrix metalloproteases. Carcinogenesis, 2016, 37, 18-29.	2.8	26
21	Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cellular and Molecular Life Sciences, 2015, 72, 4157-4172.	5.4	136
22	A Switch From Canonical to Noncanonical Wnt Signaling Mediates Early Differentiation of Human Neural Stem Cells. Stem Cells, 2014, 32, 3196-3208.	3.2	55
23	A screen for transcription factor targets of Glycogen Synthase Kinase-3 highlights an inverse correlation of NFκB and Androgen Receptor Signaling in Prostate Cancer. Oncotarget, 2014, 5, 8173-8187.	1.8	23
24	Distinct expression and activity of GSKâ€3α and GSKâ€3β in prostate cancer. International Journal of Cancer, 2012, 131, E872-83.	5.1	56