List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/416710/publications.pdf Version: 2024-02-01

IOSHIIA R EDEI

#	Article	IF	CITATIONS
1	Measuring conductance switching in single proteins using quantum tunneling. Science Advances, 2022, 8, eabm8149.	10.3	18
2	Localised solid-state nanopore fabrication via controlled breakdown using on-chip electrodes. Nano Research, 2022, 15, 9881-9889.	10.4	8
3	Tuning Interfacial Energy Barriers in Heterojunctions for Antiâ€Interference Sensing. Advanced Functional Materials, 2021, 31, 2008604.	14.9	14
4	Combined quantum tunnelling and dielectrophoretic trapping for molecular analysis at ultra-low analyte concentrations. Nature Communications, 2021, 12, 913.	12.8	34
5	Single-molecule amplification-free multiplexed detection of circulating microRNA cancer biomarkers from serum. Nature Communications, 2021, 12, 3515.	12.8	107
6	Nanophotonic biosensors harnessing van der Waals materials. Nature Communications, 2021, 12, 3824.	12.8	88
7	Length-Dependent, Single-Molecule Analysis of Short Double-Stranded DNA Fragments through Hydrogel-Filled Nanopores: A Potential Tool for Size Profiling Cell-Free DNA. ACS Applied Materials & Interfaces, 2021, 13, 26673-26681.	8.0	11
8	Singleâ€Molecule Binding Assay Using Nanopores and Dimeric NP Conjugates. Advanced Materials, 2021, 33, e2103067.	21.0	26
9	Understanding Electrical Conduction and Nanopore Formation During Controlled Breakdown. Small, 2021, 17, 2102543.	10.0	6
10	<i>In situ</i> solid-state nanopore fabrication. Chemical Society Reviews, 2021, 50, 4974-4992.	38.1	64
11	Visualising G-quadruplex DNA dynamics in live cells by fluorescence lifetime imaging microscopy. Nature Communications, 2021, 12, 162.	12.8	101
12	Single-molecule nanopore sensing of actin dynamics and drug binding. Chemical Science, 2020, 11, 970-979.	7.4	38
13	Electrotunable Nanoplasmonics for Amplified Surface Enhanced Raman Spectroscopy. ACS Nano, 2020, 14, 328-336.	14.6	32
14	Selective Sensing of Proteins Using Aptamer Functionalized Nanopore Extended Fieldâ€Effect Transistors. Small Methods, 2020, 4, 2000356.	8.6	33
15	Solid-state nanopore sensors. Nature Reviews Materials, 2020, 5, 931-951.	48.7	335
16	Self-assembling two-dimensional nanophotonic arrays for reflectivity-based sensing. Chemical Science, 2020, 11, 9563-9570.	7.4	8
17	Back Cover: Selective Sensing of Proteins Using Aptamer Functionalized Nanopore Extended Fieldâ€Effect Transistors (Small Methods 11/2020). Small Methods, 2020, 4, 2070044.	8.6	2
18	The effect of structural heterogeneity upon the microviscosity of ionic liquids. Chemical Science, 2020, 11, 6121-6133.	7.4	21

#	Article	IF	CITATIONS
19	Individually Addressable Multi-nanopores for Single-Molecule Targeted Operations. Nano Letters, 2020, 20, 2012-2019.	9.1	20
20	Auxetic Thermoresponsive Nanoplasmonic Optical Switch. ACS Applied Materials & Interfaces, 2019, 11, 22754-22760.	8.0	13
21	Small molecule electro-optical binding assay using nanopores. Nature Communications, 2019, 10, 1797.	12.8	74
22	Rapid Fragmentation during Seeded Lysozyme Aggregation Revealed at the Single Molecule Level. Analytical Chemistry, 2019, 91, 6880-6886.	6.5	7
23	High-resolution label-free 3D mapping of extracellular pH of single living cells. Nature Communications, 2019, 10, 5610.	12.8	62
24	Nanoscale tweezers for single-cell biopsies. Nature Nanotechnology, 2019, 14, 80-88.	31.5	147
25	Nanoplasmonic Metamaterial Devices as Electrically Switchable Perfect Mirrors and Perfect Absorbers. , 2019, , .		1
26	Collective modes of self-assembled supercluster metamaterials: towards label-free sensing. , 2019, , .		0
27	Development of microfluidic platforms for the synthesis of metal complexes and evaluation of their DNA affinity using online FRET melting assays. Chemical Science, 2018, 9, 3459-3469.	7.4	17
28	Towards Electrotuneable Nanoplasmonic Fabry–Perot Interferometer. Scientific Reports, 2018, 8, 565.	3.3	19
29	Double Barrel Nanopores as a New Tool for Controlling Single-Molecule Transport. Nano Letters, 2018, 18, 2738-2745.	9.1	66
30	Covalently Attached Antimicrobial Surfaces Using BODIPY: Improving Efficiency and Effectiveness. ACS Applied Materials & amp; Interfaces, 2018, 10, 98-104.	8.0	35
31	Structure and nature of theÂPalaeozoic basement based on magnetic, gravimetric and seismic investigations in theÂcentral Upper Rhinegraben. Geothermal Energy, 2018, 6, .	1.9	10
32	A Tunable Nanoplasmonic Mirror at an Electrochemical Interface. ACS Photonics, 2018, 5, 4604-4616.	6.6	23
33	Gated Single-Molecule Transport in Double-Barreled Nanopores. ACS Applied Materials & Interfaces, 2018, 10, 38621-38629.	8.0	21
34	Scissoring genes with light. Nature Chemistry, 2018, 10, 800-801.	13.6	0
35	Chemically Modified Hydrogel-Filled Nanopores: A Tunable Platform for Single-Molecule Sensing. Nano Letters, 2018, 18, 6084-6093.	9.1	47
36	Selective single molecule nanopore sensing of proteins using DNA aptamer-functionalised gold nanoparticles. Chemical Science, 2017, 8, 3905-3912.	7.4	100

#	Article	IF	CITATIONS
37	Quantitative Affinity Determination by Fluorescence Anisotropy Measurements of Individual Nanoliter Droplets. Analytical Chemistry, 2017, 89, 1092-1101.	6.5	27
38	Low-Noise Plasmonic Nanopore Biosensors for Single Molecule Detection at Elevated Temperatures. ACS Photonics, 2017, 4, 2835-2842.	6.6	32
39	Nanopore extended field-effect transistor for selective single-molecule biosensing. Nature Communications, 2017, 8, 586.	12.8	111
40	Electrotunable nanoplasmonic liquid mirror. Nature Materials, 2017, 16, 1127-1135.	27.5	115
41	Single Molecule Trapping and Sensing Using Dual Nanopores Separated by a Zeptoliter Nanobridge. Nano Letters, 2017, 17, 6376-6384.	9.1	52
42	Graphene-edge dielectrophoretic tweezers for trapping of biomolecules. Nature Communications, 2017, 8, 1867.	12.8	69
43	Ultrasensitive and towards single molecule SERS: general discussion. Faraday Discussions, 2017, 205, 291-330.	3.2	11
44	Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers. Nature Communications, 2017, 8, 1552.	12.8	165
45	Monitoring plasmon coupling and SERS enhancement through <i>in situ</i> nanoparticle spacing modulation. Faraday Discussions, 2017, 205, 67-83.	3.2	29
46	3D Confocal Raman Tomography to Probe Field Enhancements inside Supercluster Metamaterials. ACS Photonics, 2017, 4, 2070-2077.	6.6	11
47	Microfluidic generation of encapsulated droplet interface bilayer networks (multisomes) and their use as cell-like reactors. Chemical Communications, 2016, 52, 5961-5964.	4.1	63
48	Highly sensitive detection using microring resonator and nanopores. , 2016, , .		0
49	On-Demand Surface- and Tip-Enhanced Raman Spectroscopy Using Dielectrophoretic Trapping and Nanopore Sensing. ACS Photonics, 2016, 3, 1036-1044.	6.6	38
50	Real-Time Monitoring of Ligand Binding to G-Quadruplex and Duplex DNA by Whispering Gallery Mode Sensing. ACS Sensors, 2016, 1, 1097-1102.	7.8	6
51	Tuneable 2D self-assembly of plasmonic nanoparticles at liquid liquid interfaces. Nanoscale, 2016, 8, 19229-19241.	5.6	56
52	Unravelling the optical responses of nanoplasmonic mirror-on-mirror metamaterials. Physical Chemistry Chemical Physics, 2016, 18, 20486-20498.	2.8	18
53	Advanced Compositional Analysis of Nanoparticle-polymer Composites Using Direct Fluorescence Imaging. Journal of Visualized Experiments, 2016, , .	0.3	1
54	Fundamentals and applications of self-assembled plasmonic nanoparticles at interfaces. Chemical Society Reviews, 2016, 45, 1581-1596.	38.1	99

#	Article	IF	CITATIONS
55	Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping. Nature Communications, 2016, 7, 10217.	12.8	224
56	Optimization and Design of an Absorbance Spectrometer Controlled Using a Raspberry Pi To Improve Analytical Skills. Journal of Chemical Education, 2016, 93, 1232-1240.	2.3	37
57	Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing. ACS Applied Materials & Interfaces, 2016, 8, 9319-9326.	8.0	18
58	Self-Assembled Spherical Supercluster Metamaterials from Nanoscale Building Blocks. ACS Photonics, 2016, 3, 35-42.	6.6	30
59	Single Molecule Protein Unfolding Using a Nanopore. RSC Nanoscience and Nanotechnology, 2016, , 237-269.	0.2	1
60	Low Noise Nanopore Platforms Optimised for the Synchronised Optical and Electrical Detection of Biomolecules. RSC Nanoscience and Nanotechnology, 2016, , 270-300.	0.2	1
61	Fine tuning of nanopipettes using atomic layer deposition for single molecule sensing. Analyst, The, 2015, 140, 4828-4834.	3.5	28
62	Advanced analysis of nanoparticle composites – a means toward increasing the efficiency of functional materials. RSC Advances, 2015, 5, 53789-53795.	3.6	16
63	Synchronized Optical and Electronic Detection of Biomolecules Using a Low Noise Nanopore Platform. ACS Nano, 2015, 9, 1740-1748.	14.6	62
64	Electrodeposition and Bipolar Effects in Metallized Nanopores and Their Use in the Detection of Insulin. Analytical Chemistry, 2015, 87, 2337-2344.	6.5	27
65	Selectively Sized Graphene-Based Nanopores for in Situ Single Molecule Sensing. ACS Applied Materials & Interfaces, 2015, 7, 18188-18194.	8.0	28
66	On-Demand Delivery of Single DNA Molecules Using Nanopipets. ACS Nano, 2015, 9, 3587-3595.	14.6	66
67	Editorial – From nanopores to nanochannels. Analyst, The, 2015, 140, 4732-4732.	3.5	1
68	3D Droplet Microfluidic Systems for High-Throughput Biological Experimentation. Analytical Chemistry, 2015, 87, 10770-10778.	6.5	45
69	Precise Attoliter Temperature Control of Nanopore Sensors Using a Nanoplasmonic Bullseye. Nano Letters, 2015, 15, 553-559.	9.1	49
70	Heavy Metal Sensing Using Selfâ€Assembled Nanoparticles at a Liquid–Liquid Interface. Advanced Optical Materials, 2014, 2, 966-977.	7.3	47
71	Nonequilibrium Capture Rates Induce Protein Accumulation and Enhanced Adsorption to Solid-State Nanopores. ACS Nano, 2014, 8, 12238-12249.	14.6	23
72	Label-Free In-Flow Detection of Single DNA Molecules using Glass Nanopipettes. Analytical Chemistry, 2014, 86, 835-841.	6.5	49

#	Article	IF	CITATIONS
73	High Precision Fabrication and Positioning of Nanoelectrodes in a Nanopore. ACS Nano, 2014, 8, 1940-1948.	14.6	33
74	Optical Properties of Ordered Self-Assembled Nanoparticle Arrays at Interfaces. Journal of Physical Chemistry C, 2014, 118, 23264-23273.	3.1	17
75	Single Molecule Ionic Current Sensing in Segmented Flow Microfluidics. Analytical Chemistry, 2014, 86, 1864-1871.	6.5	21
76	SSB Binding to Single-Stranded DNA Probed Using Solid-State Nanopore Sensors. Journal of Physical Chemistry B, 2014, 118, 11605-11612.	2.6	33
77	Label-Free Pb(II) Whispering Gallery Mode Sensing Using Self-Assembled Glutathione-Modified Gold Nanoparticles on an Optical Microcavity. Analytical Chemistry, 2014, 86, 6299-6306.	6.5	51
78	Self-Assembly of Nanoparticle Arrays for Use as Mirrors, Sensors, and Antennas. ACS Nano, 2013, 7, 9526-9532.	14.6	120
79	Rapid Ultrasensitive Single Particle Surface-Enhanced Raman Spectroscopy Using Metallic Nanopores. Nano Letters, 2013, 13, 4602-4609.	9.1	100
80	Mapping the Ion Current Distribution in Nanopore/Electrode Devices. ACS Nano, 2013, 7, 547-555.	14.6	13
81	Self-Assembly and Applications of Ultraconcentrated Nanoparticle Solutions. ACS Nano, 2013, 7, 8753-8759.	14.6	16
82	Droplet-Interfaced Microchip and Capillary Electrophoretic Separations. Analytical Chemistry, 2013, 85, 8654-8660.	6.5	32
83	Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nature Materials, 2013, 12, 165-171.	27.5	343
84	Superhydrophobic Surfaces as an On-Chip Microfluidic Toolkit for Total Droplet Control. Analytical Chemistry, 2013, 85, 5405-5410.	6.5	38
85	Droplet-Based Microfluidic Platform for High-Throughput, Multi-Parameter Screening of Photosensitizer Activity. Analytical Chemistry, 2013, 85, 8866-8872.	6.5	53
86	Single-Molecule Studies of Intrinsically Disordered Proteins Using Solid-State Nanopores. Analytical Chemistry, 2013, 85, 2449-2456.	6.5	71
87	Single molecule unfolding and stretching of protein domains inside a solid-state nanopore by electric field. Scientific Reports, 2013, 3, 1638.	3.3	157
88	A Fully Unsupervised Compartment-on-Demand Platform for Precise Nanoliter Assays of Time-Dependent Steady-State Enzyme Kinetics and Inhibition. Analytical Chemistry, 2013, 85, 4761-4769.	6.5	85
89	Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. Chemical Society Reviews, 2013, 42, 15-28.	38.1	424
90	Tectonic evolution of the European Variscan belt constrained by palaeomagnetic, structural and anisotropy of magnetic susceptibility data from the Northern Vosges magmatic arc (eastern France). Journal of the Geological Society, 2013, 170, 785-804.	2.1	44

#	Article	IF	CITATIONS
91	Droplet dispensing in digital microfluidic devices: Assessment of long-term reproducibility. Biomicrofluidics, 2012, 6, 22003-2200310.	2.4	19
92	SSB Enhances Detection of ssDNA Translocation through Solid-State Nanopores. Biophysical Journal, 2012, 102, 205a.	0.5	1
93	Protein Unfolding and Stability Measurement using a Solid-State Nanopore. Biophysical Journal, 2012, 102, 429a-430a.	0.5	1
94	Controlled one dimensional oscillation of the Belousov–Zhabotinsky reaction confined within microchannels. RSC Advances, 2012, 2, 6408.	3.6	3
95	Lab-chip HPLC with integrated droplet-based microfluidics for separation and high frequency compartmentalisation. Chemical Communications, 2012, 48, 9144.	4.1	23
96	Microfluidic evaporator for on-chip sample concentration. Lab on A Chip, 2012, 12, 4049.	6.0	24
97	Dielectric Cell Response in Highly Conductive Buffers. Analytical Chemistry, 2012, 84, 1849-1853.	6.5	12
98	Compartmentalization of Electrophoretically Separated Analytes in a Multiphase Microfluidic Platform. Analytical Chemistry, 2012, 84, 5801-5808.	6.5	16
99	Plasmonic Ruler at the Liquid–Liquid Interface. ACS Nano, 2012, 6, 7789-7799.	14.6	103
100	Ultrafast Surface Enhanced Resonance Raman Scattering Detection in Droplet-Based Microfluidic Systems. Analytical Chemistry, 2011, 83, 3076-3081.	6.5	103
101	High-throughput age synchronisation of Caenorhabditis elegans. Chemical Communications, 2011, 47, 9801.	4.1	43
102	Flow-Based Autocorrelation Studies for the Detection and Investigation of Single-Particle Surface-Enhanced Resonance Raman Spectroscopic Events. Analytical Chemistry, 2011, 83, 1418-1424.	6.5	10
103	DNA Tunneling Detector Embedded in a Nanopore. Nano Letters, 2011, 11, 279-285.	9.1	214
104	Chemical, Thermal, and Electric Field Induced Unfolding of Single Protein Molecules Studied Using Nanopores. Analytical Chemistry, 2011, 83, 5137-5144.	6.5	123
105	Fluorescence detection methods for microfluidic droplet platforms. Journal of Visualized Experiments, 2011, , .	0.3	14
106	A microdroplet dilutor for high-throughput screening. Nature Chemistry, 2011, 3, 437-442.	13.6	174
107	Resizing Metal oated Nanopores Using a Scanning Electron Microscope. Small, 2011, 7, 2736-2741.	10.0	6
108	Nanopore/electrode structures for single-molecule biosensing. Electrochimica Acta, 2010, 55, 8237-8243.	5.2	34

#	Article	IF	CITATIONS
109	Rapid Prototyping of Nanofluidic Systems Using Sizeâ€Reduced Electrospun Nanofibers for Biomolecular Analysis. Small, 2010, 6, 2420-2426.	10.0	14
110	Single molecule protein biophysics using chemically modified nanopores. , 2010, , .		3
111	New developments in nanopore research—from fundamentals to applications. Journal of Physics Condensed Matter, 2010, 22, 450301.	1.8	12
112	A microfluidic approach for high-throughput droplet interface bilayer (DIB) formation. Chemical Communications, 2010, 46, 1620.	4.1	81
113	High-Resolution Local Imaging of Temperature in Dielectrophoretic Platforms. Analytical Chemistry, 2010, 82, 7509-7514.	6.5	17
114	High-Efficiency Single-Molecule Detection within Trapped Aqueous Microdroplets. Journal of Physical Chemistry B, 2010, 114, 15766-15772.	2.6	32
115	Mapping of Fluidic Mixing in Microdroplets with 1 μs Time Resolution Using Fluorescence Lifetime Imaging. Analytical Chemistry, 2010, 82, 3950-3956.	6.5	47
116	Precise electrochemical fabrication of sub-20 nm solid-state nanopores for single-molecule biosensing. Journal of Physics Condensed Matter, 2010, 22, 454128.	1.8	33
117	Fabrication of Metallised Solid-State Nanopores Using Electrodeposition with Ionic Current Feedback. Biophysical Journal, 2010, 98, 598a.	0.5	0
118	Rapid cell extraction in aqueous two-phase microdroplet systems. Chemical Science, 2010, 1, 447.	7.4	73
119	Passive self-synchronized two-droplet generation. Lab on A Chip, 2010, 10, 2702.	6.0	45
120	Opportunities for microfluidic technologies in synthetic biology. Journal of the Royal Society Interface, 2009, 6, S493-506.	3.4	64
121	Micro- and nanofluidic systems for high-throughput biological screening. Drug Discovery Today, 2009, 14, 134-146.	6.4	190
122	Analysis of Protein–Protein Interactions by Using Dropletâ€Based Microfluidics. ChemBioChem, 2009, 10, 1605-1611.	2.6	60
123	Increasing the Trapping Efficiency of Particles in Microfluidic Planar Platforms by Means of Negative Dielectrophoresis. Journal of Physical Chemistry B, 2009, 113, 1493-1500.	2.6	13
124	Electro-Coalescence of Digitally Controlled Droplets. Analytical Chemistry, 2009, 81, 7321-7325.	6.5	83
125	High throughput Single-Molecule Spectroscopy Using Nanoporous Membranes. Biophysical Journal, 2009, 96, 28a.	0.5	0
126	Droplet-based compartmentalization of chemically separated components in two-dimensional separations. Chemical Communications, 2009, , 6159.	4.1	82

#	Article	IF	CITATIONS
127	Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics. Analyst, The, 2009, 134, 2239.	3.5	45
128	High-throughput confinement and detection of single DNA molecules in aqueous microdroplets. Chemical Communications, 2009, , 6548.	4.1	29
129	Optical detection in microfluidics: From the small to the large. , 2009, , .		0
130	Chemical imaging of microfluidic flows using ATR-FTIR spectroscopy. Lab on A Chip, 2009, 9, 2909.	6.0	101
131	High-Throughput DNA Assays Using Picoliter Reactor Volumes. Biophysical Journal, 2009, 96, 544a.	0.5	0
132	Gold nanoparticles for one step DNA extraction and real-time PCR of pathogens in a single chamber. Lab on A Chip, 2008, 8, 810.	6.0	66
133	Microdroplets: A sea of applications?. Lab on A Chip, 2008, 8, 1244.	6.0	579
134	Monitoring of Real-Time Streptavidinâ^'Biotin Binding Kinetics Using Droplet Microfluidics. Analytical Chemistry, 2008, 80, 7063-7067.	6.5	138
135	Pillar-induced droplet merging in microfluidic circuits. Lab on A Chip, 2008, 8, 1837.	6.0	314
136	Chapter 7. Nanopore-Based Optofluidic Devices for Single Molecule Sensing. RSC Nanoscience and Nanotechnology, 2008, , 139-155.	0.2	0
137	Development of Quantitative Cell-Based Enzyme Assays in Microdroplets. Analytical Chemistry, 2008, 80, 3890-3896.	6.5	191
138	Design of a solid-state nanopore-based platform for single-molecule spectroscopy. Nanotechnology, 2008, 19, 165205.	2.6	21
139	Fluorescence Lifetime Imaging of Mixing Dynamics in Continuous-Flow Microdroplet Reactors. Physical Review Letters, 2008, 101, 014502.	7.8	35
140	Interphoton burst recurrence times: Single cell analysis in freely flowing solutions. Applied Physics Letters, 2007, 90, 053904.	3.3	6
141	Hydrodynamic focusing in microstructures: Improved detection efficiencies in subfemtoliter probe volumes. Journal of Applied Physics, 2007, 101, 084903.	2.5	27
142	High-Throughput DNA Droplet Assays Using Picoliter Reactor Volumes. Analytical Chemistry, 2007, 79, 6682-6689.	6.5	134
143	Quantitative detection of protein expression in single cells using droplet microfluidics. Chemical Communications, 2007, , 1218.	4.1	326
144	Accurate Single Molecule FRET Efficiency Determination for Surface Immobilized DNA Using Maximum Likelihood Calculated Lifetimes. Journal of Physical Chemistry B, 2007, 111, 2986-2990.	2.6	34

#	Article	lF	CITATIONS
145	Single-Molecule Spectroscopy Using Nanoporous Membranes. Nano Letters, 2007, 7, 2901-2906.	9.1	110
146	Discrimination between SingleEscherichia coliCells Using Time-Resolved Confocal Spectroscopy. Journal of Physical Chemistry B, 2007, 111, 1129-1134.	2.6	9
147	Electrospun Polymer Nanofibers as Subwavelength Optical Waveguides Incorporating Quantum Dots. Small, 2006, 2, 495-499.	10.0	148
148	Detection and identification of nucleic acid engineered fluorescent labels in submicrometre fluidic channels. Nanotechnology, 2005, 16, S314-S323.	2.6	32
149	Single-molecule mobility and spectral measurements in submicrometer fluidic channels. Journal of Applied Physics, 2005, 98, 044903.	2.5	23
150	Suspended glass nanochannels coupled with microstructures for single molecule detection. Journal of Applied Physics, 2005, 97, 124317.	2.5	45
151	Single molecule studies of quantum dot conjugates in a submicrometer fluidic channel. Lab on A Chip, 2005, 5, 337.	6.0	87
152	High Spatial Resolution Observation of Single-Molecule Dynamics in Living Cell Membranes. Biophysical Journal, 2005, 88, L43-L45.	0.5	63
153	Micrometer-Sized Supported Lipid Bilayer Arrays for Bacterial Toxin Binding Studies through Total Internal Reflection Fluorescence Microscopy. Biophysical Journal, 2005, 89, 296-305.	0.5	84
154	Continuous real-time bubble monitoring in microchannels using refractive index detection. Measurement Science and Technology, 2004, 15, 290-296.	2.6	13
155	Integrated on-chip derivatization and electrophoresis for the rapid analysis of biogenic amines. Electrophoresis, 2004, 25, 2363-2373.	2.4	55
156	Thin-film polymer light emitting diodes as integrated excitation sources for microscale capillary electrophoresis. Lab on A Chip, 2004, 4, 136.	6.0	74
157	Determination of single particle flow velocities in microchannels using a maximum likelihood estimator method. Physical Chemistry Chemical Physics, 2003, 5, 3973.	2.8	6
158	Single Particle Confocal Fluorescence Spectroscopy in Microchannels: Dependence of Burst Width and Burst Area Distributions on Particle Size and Flow Rate. Analytical Sciences, 2003, 19, 1065-1069.	1.6	10
159	Solution-phase electroluminescence. Chemical Communications, 2002, , 1954-1955.	4.1	8
160	Microfluidic routes to the controlled production of nanoparticlesElectronic supplementary information ESI available: image of the central portion of the micromixer chip. See http://www.rsc.org/suppdata/cc/b2/b202998g/. Chemical Communications, 2002, , 1136-1137.	4.1	248
161	Controlled Quantum Dot Synthesis within Microfluidic Circuits. , 2002, , 772-774.		1
162	Velocity measurement of particulate flow in microfluidic channels using single point confocal fluorescence detection. Analyst, The, 2001, 126, 1953-1957.	3.5	20

#	Article	IF	CITATIONS
163	Cadomian terranes, wrench faulting and thrusting in the central Europe Variscides: geophysical and geological evidence. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1995, 84, 412.	1.3	56
164	Contribution of Magnetism and Gravimetry to the Knowledge of the Antepermian Basement in the Rhinegraben. Applications to Geothermy , 1980, , 89-98.		2
165	Controlled synthesis of compound semiconductor nanoparticles using microfluidic reactors. , 0, , .		1
166	Carbon Nanofiber/SiO2 Nanoparticle/HDPE Composites as Physically Resilient and Submersible Water-Repellent Coatings on HDPE Substrates. ACS Applied Nano Materials, 0, , .	5.0	2