Jianchao Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4167089/publications.pdf

Version: 2024-02-01

1307366 839398 26 347 7 18 citations g-index h-index papers 28 28 28 468 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A fast antibiotic detection method for simplified pretreatment through spectra-based machine learning. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	16
2	Machine learning based on holographic scattering spectrum for mixed pollutants analysis. Analytica Chimica Acta, 2021, 1143, 298-305.	2.6	7
3	Preparation of a modified g-C ₃ N ₄ catalyst library and realization of a two-dimensional screening reaction. New Journal of Chemistry, 2021, 45, 2582-2588.	1.4	2
4	Image learning to accurately identify complex mixture components. Analyst, The, 2021, 146, 5942-5950.	1.7	2
5	Direct Quantification of Mixed Organic Acids Based on Spectral Image with Deep Learning. ChemistrySelect, 2021, 6, 3540-3547.	0.7	3
6	Machine learning for mixture toxicity analysis based on high-throughput printing technology. Talanta, 2020, 207, 120299.	2.9	6
7	High-Throughput Screening of Multimetal Sulfides-Modified g-C3N4 for Degradation of Organic Contaminations Based on Ink-Jet Printing (IJP) Technology. Catalysis Letters, 2020, 150, 1650-1658.	1.4	3
8	Fast-developing machine learning support complex system research in environmental chemistry. New Journal of Chemistry, 2020, 44, 1179-1184.	1.4	8
9	A color-spectral machine learning path for analysis of five mixed amino acids. Chemical Communications, 2020, 56, 1058-1061.	2.2	15
10	Machine learning for total organic carbon analysis of environmental water samples using high-throughput colorimetric sensors. Analyst, The, 2020, 145, 2197-2203.	1.7	8
11	A fluorescent fingerprint recording strategy for complex chemical solution. Analytical Methods, 2019, 11, 897-900.	1.3	0
12	A Novel Encoded Recording Strategy of Complex Chemical System. Chemistry Letters, 2017, 46, 360-363.	0.7	4
13	Serial microbubble imaging technology (sMBI) for rapid screening of hydrogen-evolution materials used in photocatalytic water-splitting reactions. Analytical Methods, 2017, 9, 1835-1838.	1.3	3
14	Preparation and catalytic performance of copper-containing magnetic catalysts for degradation of azo dye (direct violet). Water Science and Technology, 2017, 76, 3069-3078.	1.2	4
15	Visible-photo catalytic performance and screening of sulfide-loaded g-C3N4 composites in an aqueous reaction. Catalysis Communications, 2017, 100, 223-226.	1.6	5
16	An Ink-jet Printing Strategy for Extensive Exploration of One Chemical Action with Three Interactive Variations. Analytical Sciences, 2017, 33, 1-3.	0.8	4
17	Preparation and Photocatalytic Performance of MWCNTs/TiO ₂ Nanocomposites for Degradation of Aqueous Substrate. Journal of Chemistry, 2016, 2016, 1-8.	0.9	14
18	Distribution of Heavy Metal Pollution in Surface Soil Samples in China: A Graphical Review. Bulletin of Environmental Contamination and Toxicology, 2016, 97, 303-309.	1.3	195

#	Article	IF	CITATIONS
19	Photocatalytic Performance of Titanium Dioxide Nanoparticles Doped with Multi-metals. Journal of Advanced Oxidation Technologies, 2016, 19, .	0.5	5
20	A non-traditional energy transfer process in CWPO heterogeneous reaction for wastewater treatment. Chemical Engineering Research and Design, 2016, 114, 142-147.	2.7	14
21	A novel preparation approach and denitrification performance of TiO ₂ /Fe ⁰ photocatalysts. Desalination and Water Treatment, 2016, 57, 3125-3131.	1.0	8
22	Fluorescence imaging technology (FI) for high-throughput screening of selenide-modified nano-TiO2 catalysts. Chemical Communications, 2016, 52, 2944-2947.	2.2	7
23	A Novel Highâ€Throughput Screening of Multicomponent Photocatalysts for Decomposition of Organic Pollutants Based on Fluorescence Imaging. ChemCatChem, 2015, 7, 3978-3984.	1.8	5
24	Study on mass transfer of droplets in narrow space. Chemical Engineering Science, 2015, 134, 489-495.	1.9	1
25	A novel formula to describe the velocity profile of free jet flow. Archive of Applied Mechanics, 2011, 81, 397-402.	1.2	8
26	Iminodiethylenediaminium bis(2,5-dichlorobenzenesulfonate). Acta Crystallographica Section E: Structure Reports Online, 2005, 61, o2403-o2405.	0.2	0