Dmitry Grishenkov

List of Publications by Citations

Source: https://exaly.com/author-pdf/4167017/dmitry-grishenkov-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28 428 14 20 g-index

35 521 4.4 avg, IF L-index

#	Paper	IF	Citations
28	Magnetite nanoparticles can be coupled to microbubbles to support multimodal imaging. Biomacromolecules, 2012 , 13, 1390-9	6.9	64
27	Graphene Meets Microbubbles: A Superior Contrast Agent for Photoacoustic Imaging. <i>ACS Applied Materials & Discourt Materials & Discour</i>	9.5	38
26	On the interplay of shell structure with low- and high-frequency mechanics of multifunctional magnetic microbubbles. <i>Soft Matter</i> , 2014 , 10, 214-26	3.6	38
25	Characterization of acoustic properties of PVA-shelled ultrasound contrast agents: linear properties (part I). <i>Ultrasound in Medicine and Biology</i> , 2009 , 35, 1127-38	3.5	36
24	MicroBubble activated acoustic cell sorting. <i>Biomedical Microdevices</i> , 2017 , 19, 23	3.7	27
23	In vitro contrast-enhanced ultrasound measurements of capillary microcirculation: comparison between polymer- and phospholipid-shelled microbubbles. <i>Ultrasonics</i> , 2011 , 51, 40-8	3.5	24
22	Review on Acoustic Droplet Vaporization in Ultrasound Diagnostics and Therapeutics. <i>BioMed Research International</i> , 2019 , 2019, 9480193	3	23
21	Characterization of acoustic properties of PVA-shelled ultrasound contrast agents: ultrasound-induced fracture (part II). <i>Ultrasound in Medicine and Biology</i> , 2009 , 35, 1139-47	3.5	23
20	Intensifying cavitating flows in microfluidic devices with poly(vinyl alcohol) (PVA) microbubbles. <i>Physics of Fluids</i> , 2018 , 30, 102001	4.4	19
19	A general strategy for obtaining biodegradable polymer shelled microbubbles as theranostic devices. <i>Chemical Communications</i> , 2013 , 49, 5763-5	5.8	17
18	Facile hydrodynamic cavitation ON CHIP via cellulose nanofibers stabilized perfluorodroplets inside layer-by-layer assembled SLIPS surfaces. <i>Chemical Engineering Journal</i> , 2020 , 382, 122809	14.7	15
17	Energy harvesting with micro scale hydrodynamic cavitation-thermoelectric generation coupling. <i>AIP Advances</i> , 2019 , 9, 105012	1.5	14
16	Ultrasound contrast agent loaded with nitric oxide as a theranostic microdevice. <i>Drug Design, Development and Therapy,</i> 2015 , 9, 2409-19	4.4	14
15	Acoustic characterization and contrast imaging of microbubbles encapsulated by polymeric shells coated or filled with magnetic nanoparticles. <i>Journal of the Acoustical Society of America</i> , 2013 , 134, 39	18-30	14
14	Characterization of ultrasound-induced fracture of polymer-shelled ultrasonic contrast agents by correlation analysis. <i>Journal of the Acoustical Society of America</i> , 2007 , 122, 2425-30	2.2	12
13	Investigation of polymer-shelled microbubble motions in acoustophoresis. <i>Ultrasonics</i> , 2016 , 70, 275-83	3.5	12
12	Unravelling the Acoustic and Thermal Responses of Perfluorocarbon Liquid Droplets Stabilized with Cellulose Nanofibers. <i>Langmuir</i> , 2019 , 35, 13090-13099	4	7

LIST OF PUBLICATIONS

11	characterization and optical visualization. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2015 , 62, 451-62	3.2	7	
10	Assessment of the viscoelastic and oscillation properties of a nano-engineered multimodality contrast agent. <i>Ultrasound in Medicine and Biology</i> , 2014 , 40, 2476-87	3.5	7	
9	Effect of intensified cavitation using poly(vinyl alcohol) microbubbles on spray atomization characteristics in microscale. <i>AIP Advances</i> , 2020 , 10, 025318	1.5	4	
8	Design and fabrication of a vigorous "cavitation-on-a-chip" device with a multiple microchannel configuration. <i>Microsystems and Nanoengineering</i> , 2021 , 7, 44	7.7	4	
7	Modeling and parametric investigation of thick encapsulated microbubble's nonspherical oscillations. <i>Journal of the Acoustical Society of America</i> , 2016 , 140, 3884	2.2	4	
6	Chemical effects in Bydrodynamic cavitation on a chiptIThe role of cavitating flow patterns. <i>Chemical Engineering Journal</i> , 2022 , 445, 136734	14.7	2	
5	Characterization of Acoustic Properties of PVA-Shelled Ultrasound Contrast Agents 2010, 99-108		1	
4	A Study on the Acoustic Response of Pickering Perfluoropentane Droplets in Different Media. <i>ACS Omega</i> , 2021 , 6, 5670-5678	3.9	1	
3	In Search of the Optimal Heart Perfusion Ultrasound Imaging Platform. <i>Journal of Ultrasound in Medicine</i> , 2015 , 34, 1599-605	2.9	О	
2	On the Development of a Novel Contrast Pulse Sequence for Polymer-Shelled Microbubbles. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2021 , 68, 1569-1579	3.2	О	
1	Deriving acoustic properties for perfluoropentane droplets with viscoelastic cellulose nanofiber shell via numerical simulations. <i>Journal of the Acoustical Society of America</i> , 2021 , 150, 1750	2.2	О	