
Manu V Chakravarthy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4166908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	848 A NOVEL, PRECISION-ENGINEERED AMINO ACID COMPOSITION, AXA1665, IS SAFE, WELL-TOLERATED AND IMPROVES NEUROCOGNITION AND PHYSICAL FUNCTION IN CHILD-PUGH A AND B SUBJECTS. Gastroenterology, 2021, 160, S-796.	0.6	0
2	A novel, multitargeted endogenous metabolic modulator composition impacts metabolism, inflammation, and fibrosis in nonalcoholic steatohepatitis-relevant primary human cell models. Scientific Reports, 2021, 11, 11861.	1.6	10
3	752-P: LIVRQNac (AXA1125) Enhances Insulin Sensitivity in Primary Human Hepatocytes and in Subjects with NAFLD and T2D. Diabetes, 2021, 70, .	0.3	0
4	Safety, Tolerability, and Biologic Activity of AXA1125 and AXA1957 in Subjects With Nonalcoholic Fatty Liver Disease. American Journal of Gastroenterology, 2021, 116, 2399-2409.	0.2	9
5	Nutrition and Nonalcoholic Fatty Liver Disease. Gastroenterology Clinics of North America, 2020, 49, 63-94.	1.0	44
6	Safety, Tolerability, and Physiological Effects of AXA1665, a Novel Composition of Amino Acids, in Subjects With Child–Pugh A and B Cirrhosis. Clinical and Translational Gastroenterology, 2020, 11, e00222.	1.3	12
7	Multifactorial effects of AXA1125 and AXA1957 observed on markers of metabolism, inflammation and fibrosis: a 16-week randomized placebo-controlled study in subjects with non-alcoholic fatty liver disease (NAFLD) with and without type 2 diabetes (T2D). Journal of Hepatology, 2020, 73, S123.	1.8	2
8	Harnessing Muscle–Liver Crosstalk to Treat Nonalcoholic Steatohepatitis. Frontiers in Endocrinology, 2020, 11, 592373.	1.5	42
9	Endogenous Metabolic Modulators: Emerging Therapeutic Potential of Amino Acids. IScience, 2020, 23, 101628.	1.9	13
10	The metabolic basis of nonalcoholic steatohepatitis. Endocrinology, Diabetes and Metabolism, 2020, 3, e00112.	1.0	64
11	Correlations Between MRI Biomarkers PDFF and cT1 With Histopathological Features of Non-Alcoholic Steatohepatitis. Frontiers in Endocrinology, 2020, 11, 575843.	1.5	43
12	S1178 Utility and Interpretation of the Quantitative MRI Metrics PDFF and cT1 as Biomarkers for Non-Alcoholic Steatohepatitis. American Journal of Gastroenterology, 2020, 115, S589-S590.	0.2	0
13	A Novel Amino Acid Composition Ameliorates Short-Term Muscle Disuse Atrophy in Healthy Young Men. Frontiers in Nutrition, 2019, 6, 105.	1.6	27
14	LBP-31-AXA1665, a novel composition of amino acids restores the dysregulated amino acid profile, lowers ammonia, and improves body composition and function in Child-Pugh class A and B subjects. Journal of Hepatology, 2019, 70, e156.	1.8	0
15	Thorough QTc Evaluation and the Safety of Supratherapeutic Doses of Odanacatib in Healthy Subjects. Clinical Pharmacology in Drug Development, 2019, 8, 861-870.	0.8	0
16	Effect of CYP3A Inhibition and Induction on the Pharmacokinetics of Suvorexant: Two Phase I, Open-Label, Fixed-Sequence Trials in Healthy Subjects. Clinical Drug Investigation, 2019, 39, 441-451.	1.1	12
17	Metabolic improvements following Roux-en-Y surgery assessed by solid meal test in subjects with short duration type 2 diabetes. BMC Obesity, 2017, 4, 10.	3.1	14
18	Leveraging a Clinical Phase Ib Proofâ€ofâ€Concept Study for the GPR40 Agonist MKâ€8666 in Patients With Type 2 Diabetes for Modelâ€Informed Phase II Dose Selection. Clinical and Translational Science, 2017, 10, 404-411.	1.5	11

MANU V CHAKRAVARTHY

#	Article	IF	CITATIONS
19	Acetyl CoA Carboxylase Inhibition Reduces Hepatic Steatosis but Elevates Plasma Triglycerides in Mice and Humans: A Bedside to Bench Investigation. Cell Metabolism, 2017, 26, 394-406.e6.	7.2	265
20	Baseline Parameters in Clinical Trials for Nonalcoholic Steatohepatitis: Recommendations From the Liver Forum. Gastroenterology, 2017, 153, 621-625.e7.	0.6	24
21	Effects of 13-Hour Hyperglucagonemia on Energy Expenditure and Hepatic Glucose Production in Humans. Diabetes, 2017, 66, 36-44.	0.3	23
22	Decreased complexity of glucose dynamics preceding the onset of diabetes in mice and rats. PLoS ONE, 2017, 12, e0182810.	1.1	15
23	Increased Bile Acid Synthesis and Impaired Bile Acid Transport in Human Obesity. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 1935-1944.	1.8	102
24	An LC-MRM method for measuring intestinal triglyceride assembly using an oral stable isotope-labeled fat challenge. Bioanalysis, 2016, 8, 1265-1277.	0.6	3
25	Abstract 46: Bile Acid Synthesis and 12-Hydroxylation are Increased, and Bile Acid Transport is Impaired in Human Obesity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, .	1.1	1
26	Increased Bile Acid Synthesis and Deconjugation After Biliopancreatic Diversion. Diabetes, 2015, 64, 3377-3385.	0.3	66
27	Quantification, Variability, and Reproducibility of Basal Skeletal Muscle Glucose Uptake in Healthy Humans Using ¹⁸ F-FDG PET/CT. Journal of Nuclear Medicine, 2015, 56, 1520-1526.	2.8	14
28	Could the mechanisms of bariatric surgery hold the key for novel therapies?: report from a Pennington Scientific Symposium. Obesity Reviews, 2011, 12, 984-994.	3.1	41
29	De Novo Lipogenesis Maintains Vascular Homeostasis through Endothelial Nitric-oxide Synthase (eNOS) Palmitoylation*. Journal of Biological Chemistry, 2011, 286, 2933-2945.	1.6	105
30	Macrophage Fatty-acid Synthase Deficiency Decreases Diet-induced Atherosclerosis. Journal of Biological Chemistry, 2010, 285, 23398-23409.	1.6	57
31	Inactivation of hypothalamic FAS protects mice from diet-induced obesity and inflammation. Journal of Lipid Research, 2009, 50, 630-640.	2.0	41
32	Identification of a Physiologically Relevant Endogenous Ligand for PPARα in Liver. Cell, 2009, 138, 476-488.	13.5	589
33	Identification of a Physiologically Relevant Endogenous Ligand for PPARα in Liver. , 2009, 138, 476-488.		0
34	Identification of a Physiologically Relevant Endogenous Ligand for PPARα in Liver. , 2009, 138, 476-488.		0
35	Cessation of daily exercise dramatically alters precursors of hepatic steatosis in Otsuka Longâ€Evans Tokushima Fatty (OLETF) rats. Journal of Physiology, 2008, 586, 4241-4249.	1.3	88
36	Insulin Resistance and Atherosclerosis. Endocrinology and Metabolism Clinics of North America, 2008, 37, 603-621.	1.2	82

MANU V CHAKRAVARTHY

#	Article	IF	CITATIONS
37	Decreased Fetal Size Is Associated With Â-Cell Hyperfunction in Early Life and Failure With Age. Diabetes, 2008, 57, 2698-2707.	0.3	25
38	Respiratory Uncoupling in Skeletal Muscle Delays Death and Diminishes Age-Related Disease. Cell Metabolism, 2007, 6, 497-505.	7.2	96
39	The ABCs of \hat{I}^2 -cell dysfunction in type 2 diabetes. Nature Medicine, 2007, 13, 241-242.	15.2	12
40	Brain fatty acid synthase activates PPARα to maintain energy homeostasis. Journal of Clinical Investigation, 2007, 117, 2539-2552.	3.9	183
41	Physical activity and dietary intervention for chronic diseases: a quick fix after all?. Journal of Applied Physiology, 2006, 100, 1439-1440.	1.2	5
42	"New―hepatic fat activates PPARα to maintain glucose, lipid, and cholesterol homeostasis. Cell Metabolism, 2005, 1, 309-322.	7.2	462
43	Eating, exercise, and "thrifty―genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases. Journal of Applied Physiology, 2004, 96, 3-10.	1.2	371
44	Inactivity and Inaction. JAMA Pediatrics, 2003, 157, 731.	3.6	12
45	Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy. Journal of Applied Physiology, 2002, 93, 3-30.	1.2	339
46	p27Kip1: A Key Regulator of Skeletal Muscle Satellite Cell Proliferation. Clinical Orthopaedics and Related Research, 2002, 403, S221-S227.	0.7	9
47	An Obligation for Primary Care Physicians to Prescribe Physical Activity to Sedentary Patients to Reduce the Risk of Chronic Health Conditions. Mayo Clinic Proceedings, 2002, 77, 165-173.	1.4	89
48	An Obligation for Primary Care Physicians to Prescribe Physical Activity to Sedentary Patients to Reduce the Risk of Chronic Health Conditions. Mayo Clinic Proceedings, 2002, 77, 165-173.	1.4	129
49	Exercise and gene expression: physiological regulation of the human genome through physical activity. Journal of Physiology, 2002, 543, 399-411.	1.3	191
50	The Molecular Responses of Skeletal Muscle Satellite Cells to Continuous Expression of IGF-1: Implications for the Rescue of Induced Muscular Atrophy in Aged Rats. International Journal of Sport Nutrition and Exercise Metabolism, 2001, 11, S44-S48.	1.0	37
51	Culture in low levels of oxygen enhances in vitro proliferation potential of satellite cells from old skeletal muscles. Cellular and Molecular Life Sciences, 2001, 58, 1150-1158.	2.4	76
52	Long-term insulin-like growth factor-I expression in skeletal muscles attenuates the enhanced in vitro proliferation ability of the resident satellite cells in transgenic mice. Mechanisms of Ageing and Development, 2001, 122, 1303-1320.	2.2	26
53	IGF-I restores satellite cell proliferative potential in immobilized old skeletal muscle. Journal of Applied Physiology, 2000, 89, 1365-1379.	1.2	228
54	Insulin-like Growth Factor-I Extends in VitroReplicative Life Span of Skeletal Muscle Satellite Cells by Enhancing G1/S Cell Cycle Progression via the Activation of Phosphatidylinositol 3′-Kinase/Akt Signaling Pathway. Journal of Biological Chemistry, 2000, 275, 35942-35952.	1.6	194

#	Article	IF	CITATIONS
55	Protein Structure and Chromatographic Behavior: The Separation and Characterization of Four Proteins Using Gel Filtration and Ion-Exchange Chromatography and Gel Electrophoresis. Journal of Chemical Education, 1996, 73, 268.	1.1	9