Zhenlu Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4166892/publications.pdf

Version: 2024-02-01

279798 330143 1,703 84 23 37 h-index citations g-index papers 88 88 88 1706 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	TEMPOâ€∢i>tertà€Butyl Nitrite: An Efficient Catalytic System for Aerobic Oxidation of Alcohols. Advanced Synthesis and Catalysis, 2009, 351, 89-92.	4.3	140
2	Efficient NO Equivalent for Activation of Molecular Oxygen and Its Applications in Transition-Metal-Free Catalytic Aerobic Alcohol Oxidation. Journal of Organic Chemistry, 2007, 72, 4288-4291.	3.2	110
3	2,3â€Dichloroâ€5,6â€dicyanoâ€1,4â€benzoquinone (DDQ)/ <i>tert</i> òâ€Butyl Nitrite/Oxygen: A Versatile Cataly Oxidation System. Advanced Synthesis and Catalysis, 2011, 353, 3031-3038.	tic 4.3	97
4	Metal-free, iodine-catalyzed regioselective sulfenylation of indoles with thiols. Tetrahedron Letters, 2016, 57, 1912-1916.	1.4	69
5	Pd-Catalyzed reductive heck reaction of olefins with aryl bromides for Csp ² –Csp ³ bond formation. Chemical Communications, 2018, 54, 5752-5755.	4.1	52
6	<scp>Iridiumâ€Catalyzed</scp> Enantioselective C(sp ³)–H Borylation of Cyclobutanes. Chinese Journal of Chemistry, 2020, 38, 1533-1537.	4.9	48
7	A Mild TEMPO atalyzed Aerobic Oxidative Conversion of Aldehydes into Nitriles. Advanced Synthesis and Catalysis, 2016, 358, 1157-1163.	4.3	46
8	Bidentate Geometry-Constrained Iminopyridyl Ligands in Cobalt Catalysis: Highly Markovnikov-Selective Hydrosilylation of Alkynes. Organic Letters, 2019, 21, 5767-5772.	4.6	45
9	Design and synthesis of new chiral pyridine–phosphite ligands for the copper-catalyzed enantioselective conjugate addition of diethylzinc to acyclic enones. Tetrahedron: Asymmetry, 2009, 20, 1425-1432.	1.8	44
10	ABNO atalyzed Aerobic Oxidative Synthesis of 2‧ubstituted 4 <i>H</i> h; â€3,1â€Benzoxazines and Quinazolines. European Journal of Organic Chemistry, 2017, 2017, 3335-3342.	2.4	43
11	Near-infrared carbon dots-based fluorescence turn on aptasensor for determination of carcinoembryonic antigen in pleural effusion. Analytica Chimica Acta, 2019, 1068, 52-59.	5 . 4	43
12	DDQ/tert-Butyl nitrite-catalyzed aerobic oxidation of diarylmethane sp3 C–H bonds. Tetrahedron, 2015, 71, 6733-6739.	1.9	39
13	Aerobic oxidative deprotection of benzyl-type ethers under atmospheric pressure catalyzed by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)/tert-butyl nitrite. Tetrahedron Letters, 2013, 54, 1579-1583.	1.4	38
14	Electrochemical synthesis of nitriles from aldehydes using TEMPO as a mediator. Electrochemistry Communications, 2016, 64, 51-55.	4.7	38
15	Symbiotic Catalysis Relay: Molecular Oxygen Activation Catalyzed by Multiple Small Molecules at Ambient Temperature and its Mechanism. ChemCatChem, 2012, 4, 76-80.	3.7	33
16	N-Heterocyclic carbene copper-catalyzed direct alkylation of terminal alkynes with non-activated alkyl triflates. Chemical Communications, 2017, 53, 4124-4127.	4.1	33
17	Electrocatalytic synthesis of nitriles from aldehydes with ammonium acetate as the nitrogen source. Electrochimica Acta, 2017, 226, 53-59.	5. 2	32
18	A practical iodine-catalyzed oxidative conversion of aldehydes to nitriles. RSC Advances, 2017, 7, 1484-1489.	3.6	30

#	Article	IF	Citations
19	Ferric nitrate-catalyzed aerobic oxidation of benzylic sp 3 C H bonds of ethers and alkylarenes. Tetrahedron, 2017, 73, 3002-3009.	1.9	28
20	Electrochemical Sulfenylation of Indoles with Disulfides Mediated by Potassium Iodide. Journal of the Electrochemical Society, 2018, 165, G67-G74.	2.9	27
21	Switching the Chemoselectivity in the Amination of 4-Chloroquinazolines with Aminopyrazoles. Organic Letters, 2010, 12, 552-555.	4.6	26
22	α,βâ€Double Electrophilic Addition of Alleneâ€1,3â€Dicarboxylic Esters for the Construction of Polysubstituted Furans by KI/ <i>tert</i> à6€Butyl Hydroperoxide (TBHP)â€Promoted Oxidative Annulation. Chemistry - A European Journal, 2016, 22, 9348-9355.	3.3	26
23	Transformation of ethers into aldehydes or ketones: a catalytic aerobic deprotection/oxidation pathway. Tetrahedron Letters, 2015, 56, 2768-2772.	1.4	24
24	Efficient Catalyst for Both Suzuki and Heck Crossâ€Coupling Reactions: Synthesis and Catalytic Behaviour of Geometry―Constrained Iminopyridylpalladium Chlorides. Advanced Synthesis and Catalysis, 2016, 358, 2642-2651.	4.3	24
25	Metalâ€Free Aerobic Oxidative C–O Coupling of C(<i>sp</i> ³)–H with Carboxylic Acids Catalyzed by DDQ and <i>tert</i> àâ€Butyl Nitrite. European Journal of Organic Chemistry, 2019, 2019, 5650-5655.	2.4	24
26	Gold nanoclusters-poly(9,9-dioctylfluorenyl-2,7-diyl) dots@zeolitic imidazolate framework-8 (ZIF-8) nanohybrid based probe for ratiometric analysis of dopamine. Analytica Chimica Acta, 2020, 1098, 102-109.	5.4	22
27	Synthesis of Aryl Thiocyanates via Copper-Catalyzed Aerobic Oxidative Cross-Coupling between Arylboronic Acids and KSCN. Synlett, 2013, 24, 1443-1447.	1.8	21
28	One-Pot Electrochemical Oxidation of Alcohols to Nitriles Mediated by TEMPO. Journal of the Electrochemical Society, 2017, 164, G54-G58.	2.9	21
29	I2/Fe(NO3)3Â-9H2O-catalyzed oxidative synthesis of aryl carboxylic acids from aryl alkyl ketones and secondary benzylic alcohols. Tetrahedron Letters, 2018, 59, 4349-4354.	1.4	20
30	Nickel-catalyzed C3-alkylation of indoles with alcohols <i>via</i> a borrowing hydrogen strategy. New Journal of Chemistry, 2021, 45, 10057-10062.	2.8	20
31	Dual-colored carbon dots-based ratiometric fluorescent sensor for high-precision detection of alkaline phosphatase activity. Talanta, 2020, 208, 120460.	5.5	19
32	Visible-Light-Induced Arene C(sp2)–H Lactonization Promoted by DDQ and tert-Butyl Nitrite. Synlett, 2020, 31, 261-266.	1.8	19
33	Visible-Light-Induced Aerobic Oxidation of Benzylic C(sp3)–H of Alkylarenes Promoted by DDQ, tert-Butyl Nitrite, and Acetic Acid. Synlett, 2019, 30, 218-224.	1.8	18
34	An efficient HCCP-mediated direct amination of quinazolin-4(3H)-ones. Tetrahedron, 2011, 67, 1665-1672.	1.9	16
35	Aerobic oxidation of secondary alcohols in water with ABNO/tert-butyl nitrite/KPF6 catalytic system. Tetrahedron Letters, 2017, 58, 652-657.	1.4	16
36	Highly bulky and stable geometry-constrained iminopyridines: Synthesis, structure and application in Pd-catalyzed Suzuki coupling of aryl chlorides. Beilstein Journal of Organic Chemistry, 2017, 13, 213-221.	2.2	15

3

#	Article	IF	CITATIONS
37	Unsymmetrical CNN-palladacycles with geometry-constrained iminopyridyl ligands: an efficient precatalyst in Suzuki coupling for accessing 1,1-diarylalkanes from secondary benzylic bromides. Organic Chemistry Frontiers, 2018, 5, 2484-2491.	4.5	15
38	Ligandâ€free Palladium atalyzed Carbonylative Suzuki Coupling of Aryl Iodides in Aqueous CH 3 CN with Subâ€stoichiometric Amount of Mo(CO) 6 as CO Source. Advanced Synthesis and Catalysis, 2019, 361, 2117-2123.	4.3	13
39	Preparation and electrochemical performance of TEMPO-modified polyterthiophene electrode obtained by electropolymerization. Electrochemistry Communications, 2020, 110, 106623.	4.7	13
40	Selective oxidation of benzyl alcohol on poly(4-(3-(pyrrol-1-yl)propionamido)-2,2,6,6-tetramethylpiperidin-1-yloxy) electrode. Journal of Solid State Electrochemistry, 2015, 19, 2291-2297.	2.5	12
41	Electropolymerization and Electrocatalytic Activity of Poly(4-thienylacetyl-amino-2,2,6,6-tetramethylpiperidinyl-1-yloxy)/(2,2′-bithiophene)ÂCopolymer. Journal of the Electrochemical Society, 2015, 162, H251-H255.	2.9	12
42	Synthesis of a heterogeneous Cu(OAc) ₂ -anchored SBA-15 catalyst and its application in the CuAAC reaction. New Journal of Chemistry, 2018, 42, 1612-1616.	2.8	12
43	Synthesis of 3-Sulfenylindoles from Indoles and Various Sulfenylation Agents through Aerobic Oxidative C–S Bond Coupling. Synlett, 2018, 29, 1914-1920.	1.8	12
44	Geometryâ€Constrained Iminopyridyl Palladiumâ€Catalyzed Hydroarylation of Alkynes to Prepare Triâ€substituted Alkenes Using Alcohol as Reductant. Advanced Synthesis and Catalysis, 2018, 360, 3038-3043.	4.3	12
45	Electrochemical Performance of ABNO for Oxidation of Secondary Alcohols in Acetonitrile Solution. Molecules, 2019, 24, 100.	3.8	12
46	Catalyst―and Oxidantâ€Free Electrochemical Halogenation Reactions of 2 <i>H</i> â€Indazoles with NaX (X=Cl, Br). European Journal of Organic Chemistry, 2022, 2022, .	2.4	12
47	Efficient Electrooxidation of Alcohols Using TEMPO-Modified Polyaniline Electrode Prepared by Electrochemical Polymerization. Journal of the Electrochemical Society, 2016, 163, H321-H326.	2.9	11
48	An efficient Pd–NHC catalyst system in situ generated from Na ₂ PdCl ₄ and PEG-functionalized imidazolium salts for Mizoroki–Heck reactions in water. Beilstein Journal of Organic Chemistry, 2017, 13, 1735-1744.	2.2	11
49	Copper-catalyzed direct couplings of terminal alkynes with primary and secondary benzyl bromides. Organic Chemistry Frontiers, 2019, 6, 1983-1988.	4.5	11
50	Determination of ketamine, methamphetamine and 3,4-methylenedioxymethamphetamine in human hair by flash evaporation-gas chromatography/mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1153, 122275.	2.3	10
51	2,3-Dichloro-5,6-dicyano-1,4-benzoquinone-catalyzed aerobic oxidation reactions via multistep electron transfers with iron(<scp>ii</scp>) phthalocyanine as an electron-transfer mediator. RSC Advances, 2016, 6, 51908-51913.	3.6	9
52	Oxidative C–C Bond Cleavage for the Synthesis of Aryl Carboxylic Acids from Aryl Alkyl Ketones. Synlett, 2018, 29, 1505-1509.	1.8	8
53	3-BocNH-ABNO-catalyzed aerobic oxidation of alcohol at room temperature and atmospheric pressure. Tetrahedron Letters, 2019, 60, 150994.	1.4	8
54	An efficient domino strategy for synthesis of novel spirocycloalkane fused pyrazolo[3,4-b]pyridine derivatives. Tetrahedron, 2020, 76, 131727.	1.9	8

#	Article	IF	CITATIONS
55	FeCl ₂ â€Catalyzed Direct C ₂ â€Benzylation of Benzofurans with Diarylmethanes via Cross Dehydrogenative Coupling. Asian Journal of Organic Chemistry, 2021, 10, 549-553.	2.7	8
56	SBA-15 Supported 1-Methyl-2-azaadamanane <i>N</i> Oxyl (1-Me-AZADO) as Recyclable Catalyst for Oxidation of Alcohol. Organic Letters, 2021, 23, 3928-3932.	4.6	8
57	Trichloroisocyanuric Acidâ€Promoted Synthesis of Arylselenides and Aryltellurides from Diorganyl Dichalcogenides and Arylboronic Acids at Ambient Temperature. Advanced Synthesis and Catalysis, 2021, 363, 3577-3584.	4.3	8
58	Ni-catalyzed reductive decyanation of nitriles with ethanol as the reductant. Chemical Communications, 2021, 57, 2273-2276.	4.1	8
59	Imparting antibacterial adhesion property to anion exchange membrane by constructing negatively charged functional layer. Separation and Purification Technology, 2022, 288, 120628.	7.9	8
60	Synthesis of \hat{l}_{\pm} -Hydroxy Esters by Glyoxylate-Ene Reaction in Lewis Acid Chloroaluminate Ionic Liquids. Chinese Journal of Catalysis, 2006, 27, 197-199.	14.0	7
61	Bidentate geometry-constrained iminopyridyl nickel-catalyzed synthesis of amines or imines via borrowing hydrogen or dehydrogenative condensation. Tetrahedron Letters, 2020, 61, 152604.	1.4	7
62	Trichloroisocyanuric acid-promoted thiolation of phosphites by thiols. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 19-27.	1.6	7
63	Preparation of poly(carbazole-TEMPO) electrode and its electrochemical performance. Journal of Electroanalytical Chemistry, 2021, 894, 115352.	3.8	7
64	TBAFâ€Catalyzed Tandem Synthesis of Triazolo[4,5―c]quinolines at Ambient Temperature. European Journal of Organic Chemistry, 2020, 2020, 6805-6812.	2.4	6
65	Tandem Synthesis of 2-Carboxybenzofurans <i>via</i> Sequential Cu-Catalyzed C–O Coupling and Mo(CO) ₆ -Mediated Carbonylation Reactions. Journal of Organic Chemistry, 2020, 85, 11490-11500.	3.2	6
66	Regio- and stereoselective cobalt-catalyzed hydrosilylation of 1,3-diynes with primary and secondary silanes. Organic Chemistry Frontiers, 2021, 8, 6317-6322.	4.5	6
67	Hexachlorocyclotriphosphazene (HCCP)-Mediated Direct Formation of Thioethers and Ethers from Quinazolin-4(3H)-ones. Molecules, 2013, 18, 5580-5593.	3.8	5
68	Electrochemical access to aryl sulfides from aryl thiols and electron-rich arenes with the potassium iodide as a mediator. Electrochimica Acta, 2020, 331, 135371.	5.2	5
69	A chromatography-free and aqueous waste-free process for thioamide preparation with Lawesson's reagent. Beilstein Journal of Organic Chemistry, 2021, 17, 805-812.	2.2	5
70	Nickelâ€Catalyzed Amination of Aryl Nitriles for Accessing Diarylamines through Câ^'CN Bond Activation. Advanced Synthesis and Catalysis, 2021, 363, 4708.	4.3	5
71	Large-Scale Synthesis of 2-Chlorotetrahydroquinoline and 2-Chlorotetrahydroquinolin-8-one. Synthesis, 2020, 52, 3675-3683.	2.3	4
72	Electrochemically driven synthesis of phosphorothioates from trialkyl phosphites and aryl thiols. Electrochimica Acta, 2021, 389, 138748.	5.2	4

#	Article	IF	CITATIONS
73	Ligand-free iridium-catalyzed regioselective C–H borylation of indoles. RSC Advances, 2021, 11, 5487-5490.	3.6	3
74	Electrochemical Sulfenylation of 4-Hydroxycoumarins with Aryl Thiols Catalyzed by Potassium Iodide. Journal of the Electrochemical Society, 2021, 168, 025504.	2.9	3
75	An Efficient Strategy for the Synthesis of Naphtho[2,3-b][1,6]naphthyridines Promoted by Acetic Acid. Synlett, 0, 32, .	1.8	3
76	Visible-light-induced direct C–N coupling of benzofurans and thiophenes with diarylsulfonimides promoted by DDQ and TBN. Tetrahedron, 2022, , 132853.	1.9	3
77	Improved Synthetic Process of Dimethyl 4-Oxo-4H-pyran-3,5-dicarboxylate. Organic Process Research and Development, 2019, 23, 2439-2444.	2.7	2
78	Simple and efficient one-pot multi-step strategy for the synthesis of 2-substituted (1,2,5-triarylpyrrolo[3,2-c]pyridin-3-yl)-N-arylacetamide derivatives in water. Organic and Biomolecular Chemistry, 2021, 19, 2526-2532.	2.8	2
79	Ultraviolet-light-induced aerobic oxidation of benzylic C(sp3)-H of alkylarenes under catalyst- and additive-free conditions. Tetrahedron, 2021, 82, 131947.	1.9	2
80	Solid acid-catalyzed one-pot multi-step cascade reaction: Multicomponent synthesis of indol-3-yl acetates and indol-3-yl acetamides in water. Tetrahedron, 2022, 117-118, 132839.	1.9	2
81	Heterogeneous Catalysis for Oxidation of Alcohol via 1â€Methylâ€2â€azaadamanane <i>N</i> a€oxyl Immobilized on Magnetic Polystyrene Nanosphere. ChemistrySelect, 2022, 7, .	1.5	1
82	Synthesis of Nanoâ€Cr/Mn Composite Metal Oxidesâ€SBAâ€15 Material and Its Catalytic Performance in Aerobic Oxidations of Benzyl Alcohols. ChemistrySelect, 2021, 6, 10542-10547.	1.5	0
83	A facile threeâ€component catalystâ€free strategy: Synthesis of indeno[1,2â€b][1,6]naphthyridineâ€1,10(2H)â€dione derivatives in water. Asian Journal of Organic Chemistry, 0, , .	2.7	0
84	Selective oxidation of biomassâ€based 5â€hydroxymethylfurfural to 2,5â€diformylfuran catalyzed by multicomponent molybdenum based catalyst. Journal of Chemical Technology and Biotechnology, 0, , .	3.2	0