Cheng Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4166409/publications.pdf

Version: 2024-02-01

		257450	233421
55	2,184	24	45
papers	citations	h-index	g-index
55	55	55	2036
33	33	55	2030
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Puerarin: A Review of Pharmacological Effects. Phytotherapy Research, 2014, 28, 961-975.	5.8	453
2	Asymmetric organocatalysis: an enabling technology for medicinal chemistry. Chemical Society Reviews, 2021, 50, 1522-1586.	38.1	219
3	Organocatalytic Asymmetric Synthesis of Sixâ€Membered Carbocycleâ€Based Spiro Compounds. Advanced Synthesis and Catalysis, 2018, 360, 194-228.	4.3	109
4	Organocatalytic Asymmetric Synthesis of Spiro-oxindole Piperidine Derivatives That Reduce Cancer Cell Proliferation by Inhibiting MDM2–p53 Interaction. Organic Letters, 2017, 19, 6752-6755.	4.6	78
5	Organocatalytic Asymmetric Synthesis of Cyclic Compounds Bearing a Trifluoromethylated Stereogenic Center: Recent Developments. Advanced Synthesis and Catalysis, 2019, 361, 1923-1957.	4.3	71
6	Asymmetric synthesis of a structurally and stereochemically complex spirooxindole pyran scaffold through an organocatalytic multicomponent cascade reaction. Chemical Communications, 2012, 48, 10487.	4.1	70
7	Catalytic Asymmetric Synthesis of Spiropyrazolones and their Application in Medicinal Chemistry. Chemical Record, 2019, 19, 2209-2235.	5.8	60
8	Hydroxysafflor Yellow A: A Promising Therapeutic Agent for a Broad Spectrum of Diseases. Evidence-based Complementary and Alternative Medicine, 2018, 2018, 1-17.	1.2	57
9	Highly enantioselective synthesis of fused bicyclic dihydropyranones via low-loading N-heterocyclic carbene organocatalysis. Chemical Communications, 2017, 53, 6875-6878.	4.1	55
10	Asymmetric synthesis of tetrahydroisoquinoline-fused spirooxindoles as Ras-GTP inhibitors that inhibit colon adenocarcinoma cell proliferation and invasion. Chemical Communications, 2018, 54, 8359-8362.	4.1	54
11	Aconitine induces cardiomyocyte damage by mitigating BNIP3â€dependent mitophagy and the TNFαâ€NLRP3 signalling axis. Cell Proliferation, 2020, 53, e12701.	5.3	53
12	Construction of Azepino[2,3- <i>b</i>]indole Core via Sulfur Ylide Mediated Annulations. Organic Letters, 2018, 20, 7628-7632.	4.6	49
13	Application of organocatalysis in bioorganometallic chemistry: asymmetric synthesis of multifunctionalized spirocyclic pyrazolone–ferrocene hybrids as novel RalA inhibitors. Organic Chemistry Frontiers, 2018, 5, 2229-2233.	4.5	45
14	Asymmetric synthesis of bicyclic dihydropyrans via organocatalytic inverse-electron-demand oxo-Diels–Alder reactions of enolizable aliphatic aldehydes. Chemical Communications, 2016, 52, 10617-10620.	4.1	43
15	Classification, hepatotoxic mechanisms, and targets of the risk ingredients in traditional Chinese medicine-induced liver injury. Toxicology Letters, 2020, 323, 48-56.	0.8	39
16	Stereoselective Synthesis of Hydropyrano[3,2â€∢i>b)]indoles ⟨i>via⟨/i> Organocatalytic Asymmetric Inverseâ€Electronâ€Demand Oxaâ€Diels–Alder Reaction. Advanced Synthesis and Catalysis, 2016, 358, 2970-2975.	4.3	38
17	Recent advances in the synthesis of C2-spiropseudoindoxyls. Organic and Biomolecular Chemistry, 2019, 17, 2850-2864.	2.8	38
18	Organocatalytic tandem Morita–Baylis–Hillman–Michael reaction for asymmetric synthesis of a drug-like oxa-spirocyclic indanone scaffold. Chemical Communications, 2013, 49, 8692.	4.1	37

#	Article	IF	CITATIONS
19	Recent progress on the construction of axial chirality through transition-metal-catalyzed benzannulation. Organic Chemistry Frontiers, 2021, 8, 2772-2785.	4.5	35
20	Stereoselective Assembly of Multifunctional Spirocyclohexene Pyrazolones That Induce Autophagy-Dependent Apoptosis in Colorectal Cancer Cells. Journal of Organic Chemistry, 2019, 84, 9138-9150.	3.2	34
21	Design, synthesis, and biological evaluation of nitroisoxazole-containing spiro[pyrrolidin-oxindole] derivatives as novel glutathione peroxidase 4/mouse double minute 2 dual inhibitors that inhibit breast adenocarcinoma cell proliferation. European Journal of Medicinal Chemistry, 2021, 217, 113359.	5.5	34
22	Organocatalytic Morita–Baylis–Hillman/Michael/Acetalization Cascade: Procedureâ€Controlled Diastereodivergence in the Asymmetric Synthesis of Fully Substituted Tetrahydropyrans. Advanced Synthesis and Catalysis, 2014, 356, 3676-3682.	4.3	32
23	Radical Acylalkylation of 1,3-Enynes To Access Allenic Ketones via <i>N</i> Heterocyclic Carbene Organocatalysis. Journal of Organic Chemistry, 2022, 87, 5229-5241.	3.2	27
24	Efficient synthesis of tetrahydronaphthalene- or isochroman-fused spirooxindoles using tandem reactions. RSC Advances, 2015, 5, 88272-88276.	3.6	24
25	Organocatalytic diastereoselective [3+2] cyclization of MBH carbonates with dinucleophiles: synthesis of bicyclic imidazoline derivatives that inhibit MDM2–p53 interaction. Chemical Communications, 2019, 55, 11374-11377.	4.1	23
26	Direct Sulfide-Catalyzed Diastereoselective [4+1] Annulations of <i>ortho</i> -Quinone Methides and Bromides. Journal of Organic Chemistry, 2018, 83, 12753-12762.	3.2	22
27	Diastereodivergent Formal 1,3â€Dipolar Cycloaddition of 5â€alkenyl thiazolones to Access Stereochemically Diverse Pyrrolidinyl Spirooxindoles. Advanced Synthesis and Catalysis, 2020, 362, 2052-2058.	4.3	22
28	Organocatalytic asymmetric synthesis of multifunctionalized \hat{l}_{\pm} -carboline-spirooxindole hybrids that suppressed proliferation in colorectal cancer cells. Organic Chemistry Frontiers, 2022, 9, 1048-1055.	4.5	22
29	Coreâ€Scaffoldâ€Inspired Asymmetric Synthesis of Polysubstituted Chiral Hexahydropyridazines that Potently Inhibit Breast Cancer Cell Proliferation by Inducing Apoptosis. Chemistry - A European Journal, 2015, 21, 18100-18108.	3.3	21
30	A Comprehensive Review of Natural Products against Liver Fibrosis: Flavonoids, Quinones, Lignans, Phenols, and Acids. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-19.	1.2	21
31	Novel HSP90-PI3K Dual Inhibitor Suppresses Melanoma Cell Proliferation by Interfering with HSP90-EGFR Interaction and Downstream Signaling Pathways. International Journal of Molecular Sciences, 2020, 21, 1845.	4.1	21
32	Advances in indole-containing alkaloids as potential anticancer agents by regulating autophagy. Biomedicine and Pharmacotherapy, 2022, 149, 112827.	5.6	21
33	Synthesis of functionalized \hat{l}^3 -lactones via a three-component cascade reaction catalyzed by consecutive N-heterocyclic carbene systems. RSC Advances, 2015, 5, 26972-26976.	3.6	19
34	Isodunnianol alleviates doxorubicin-induced myocardial injury by activating protective autophagy. Food and Function, 2019, 10, 2651-2657.	4.6	18
35	Control of Activation Mode To Achieve Diastereodivergence in Asymmetric Syntheses of Chiral Spiropiperidinone Derivatives. Journal of Organic Chemistry, 2017, 82, 397-406.	3.2	17
36	Chemo―and Stereoselective Cross Rauhut–Currierâ€Type Reaction of Triâ€substituted Alkenes Containing Trifluoromethyl Groups. Chemistry - A European Journal, 2018, 24, 1947-1955.	3.3	17

#	Article	IF	CITATIONS
37	Substrate-directed chemo- and regioselective synthesis of polyfunctionalized trifluoromethylarenes <i>via</i> organocatalytic benzannulation. Organic Chemistry Frontiers, 2020, 7, 563-570.	4.5	17
38	Synthesis of polysubstituted arenes through organocatalytic benzannulation. RSC Advances, 2020, 10, 40983-41003.	3.6	17
39	Asymmetric Construction of 4 <i>H</i> -Pyrano[3,2- <i>b</i>]indoles via Cinchonine-Catalyzed 1,4-Addition of 2-Ylideneoxindole with Malononitrile. Journal of Organic Chemistry, 2019, 84, 5450-5459.	3.2	16
40	Highly diastereoselective synthesis of cyclopropane-fused spiro-pseudoindoxyl derivatives through [2 $+$ 1] annulation of 2-ylideneoxindoles and sulfonium bromides. Organic and Biomolecular Chemistry, 2018, 16, 8169-8174.	2.8	15
41	A pharmacokinetic study of patchouli alcohol after a single oral administration of patchouli alcohol or patchouli oil in rats. European Journal of Drug Metabolism and Pharmacokinetics, 2016, 41, 441-448.	1.6	14
42	Highly stereoselective organocatalytic synthesis of pyrrolidinyl spirooxindoles containing halogenated contiguous quaternary carbon stereocenters. Tetrahedron Letters, 2020, 61, 151806.	1.4	14
43	Protecting Group-Directed Diastereodivergent Synthesis of Chiral Tetrahydronaphthalene-Fused Spirooxindoles via Bifunctional Tertiary Amine Catalysis. Journal of Organic Chemistry, 2019, 84, 10349-10361.	3.2	12
44	Protecting group-directed annulations of tetra-substituted oxindole olefins and sulfur ylides: regio- and chemoselective synthesis of cyclopropane- and dihydrofuran-fused spirooxindoles. RSC Advances, 2019, 9, 12255-12264.	3.6	12
45	Design and organocatalytic synthesis of spirooxindole–cyclopentene–isoxazole hybrids as novel MDM2–p53 inhibitors. Organic Chemistry Frontiers, 2021, 8, 1836-1843.	4.5	11
46	A practical green chemistry approach to synthesize fused bicyclic 4H-pyranes via an amine catalysed 1,4-addition and cyclization cascade. RSC Advances, 2016, 6, 38875-38879.	3.6	10
47	Catalytic cross-benzoin/Michael/acetalization cascade for asymmetric synthesis of trifluoromethylated \hat{l}^3 -butyrolactones. RSC Advances, 2016, 6, 28960-28965.	3.6	9
48	X-ray Structure-Guided Discovery of a Potent, Orally Bioavailable, Dual Human Indoleamine/Tryptophan 2,3-Dioxygenase (hIDO/hTDO) Inhibitor That Shows Activity in a Mouse Model of Parkinson's Disease. Journal of Medicinal Chemistry, 2021, 64, 8303-8332.	6.4	9
49	Drug design based on pentaerythritol tetranitrate reductase: synthesis and antibacterial activity of Pogostone derivatives. Organic and Biomolecular Chemistry, 2017, 15, 6548-6556.	2.8	6
50	Synthesis of Vinylcyclopropaneâ€Fused Pyrazolone Derivatives by Sulfur Ylideâ€Initiated 1,6â€Michael Additionâ€Cyclization Reactions. European Journal of Organic Chemistry, 2018, 2018, 4723-4730.	2.4	6
51	Highly Chemoselective [2+1] Annulation of \hat{l} ±-Alkylidene Pyrazolones with \hat{l} ±-Bromonitroalkenes: Synthesis of Pyrazolone-Based Vinylcyclopropanes and Computational Studies. Journal of Organic Chemistry, 2021, 86, 2582-2592.	3.2	5
52	Construction of CF ₃ -Functionalized Fully Substituted Benzonitriles through Rauhutâ€"Currier Reaction Initiated [3 + 3] Benzannulation. Journal of Organic Chemistry, 2021, 86, 14844-14854.	3.2	5
53	Pharmacological Activities of Safflower Yellow and Its Clinical Applications. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-24.	1.2	4
54	Enantio- and Diastereoselective Nitro-Mannich Reactions with in situ Generated N-Boc-imines Catalyzed by a Bifunctional Thiourea-Guanidine Catalyst. Synlett, 2011, 2011, 2981-2984.	1.8	2

#	Article	IF	CITATIONS
55	Design, Synthesis, and Biological Evaluation of Pyrano[2,3-c]-pyrazole–Based RalA Inhibitors Against Hepatocellular Carcinoma. Frontiers in Chemistry, 2021, 9, 700956.	3.6	2