Young-Min Wie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4166289/publications.pdf

Version: 2024-02-01

		1163117	1199594
19	152	8	12
papers	citations	h-index	g-index
19 all docs	19 docs citations	19 times ranked	69 citing authors

#	Article	IF	CITATIONS
1	Use of ballasted flocculation (BF) sludge for the manufacturing of lightweight aggregates. Journal of Environmental Management, 2022, 305, 114379.	7.8	6
2	Coagulation Behavior of Antimony Oxyanions in Water: Influence of pH, Inorganic and Organic Matter on the Physicochemical Characteristics of Iron Precipitates. Molecules, 2022, 27, 1663.	3.8	2
3	Efficacy of Continuous Flow Reactors for Biological Treatment of 1,4-Dioxane Contaminated Textile Wastewater Using a Mixed Culture. Fermentation, 2022, 8, 143.	3.0	7
4	Manufacturing and application of artificial lightweight aggregate from water treatment sludge. Journal of Cleaner Production, 2021, 307, 127260.	9.3	32
5	Removal of Arsenic Oxyanions from Water by Ferric Chloride—Optimization of Process Conditions and Implications for Improving Coagulation Performance. International Journal of Environmental Research and Public Health, 2021, 18, 9812.	2.6	4
6	Synergetic Effect of Organic Flocculant and Montmorillonite Clay on the Removal of Nano-CuO by Coagulation-Flocculation-Sedimentation Process. Nanomaterials, 2021, 11, 2753.	4.1	3
7	Adsorption Capacities of Iron Hydroxide for Arsenate and Arsenite Removal from Water by Chemical Coagulation: Kinetics, Thermodynamics and Equilibrium Studies. Molecules, 2021, 26, 7046.	3.8	7
8	Characterization of 1,4-Dioxane Biodegradation by a Microbial Community. Water (Switzerland), 2020, 12, 3372.	2.7	10
9	The Experimental Process Design of Artificial Lightweight Aggregates Using an Orthogonal Array Table and Analysis by Machine Learning. Materials, 2020, 13, 5570.	2.9	9
10	Physicochemical effect of the aeration rate on bloating characterizations of artificial lightweight aggregate. Construction and Building Materials, 2020, 256, 119444.	7.2	11
11	Effects of Additional Carbon Sources in the Biodegradation of 1,4-Dioxane by a Mixed Culture. Water (Switzerland), 2020, 12, 1718.	2.7	8
12	Composition design of the optimum bloating activation condition for artificial lightweight aggregate using coal ash. Journal of the Korean Ceramic Society, 2020, 57, 220-230.	2.3	4
13	Chemical design of lightweight aggregate to prevent adhesion at bloating activation temperature. Journal of Asian Ceramic Societies, 2020, 8, 245-254.	2.3	13
14	Optimum conditions for unit processing of artificial lightweight aggregates using the Taguchi method. Journal of Asian Ceramic Societies, 2019, 7, 331-341.	2.3	8
15	Optimum Bloating-Activation Zone of Artificial Lightweight Aggregate by Dynamic Parameters. Materials, 2019, 12, 267.	2.9	13
16	Bloating Mechanism of Lightweight Aggregates due to Ramping Rate. Advances in Materials Science and Engineering, 2019, 2019, 1-12.	1.8	10
17	Evaporation and Stabilization of Heavy Metals with Colloid/Interface Properties in EAF Dust-Clay Bodies. Materials Science Forum, 2007, 544-545, 569-572.	0.3	2
18	Correlation to the Physical Properties of Green and Sintered Body of Artificial Lightweight Aggregate with the Pelletizing Variables. Journal of the Korean Ceramic Society, 2007, 44, 568-573.	2.3	2

#	#	Article	IF	CITATIONS
1	L9	Evaporation and Stabilization of Heavy Metals with Colloid/Interface Properties in EAF Dust-Clay Bodies. Materials Science Forum, 0, , 569-572.	0.3	1