Eui Jin Hwang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4166124/publications.pdf

Version: 2024-02-01

		304743	243625
59	2,152	22	44
papers	citations	h-index	g-index
59	59	59	2746
39	39	39	2/40
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Value of a deep learning-based algorithm for detecting Lung-RADS category 4 nodules on chest radiographs in a health checkup population: estimation of the sample size for a randomized controlled trial. European Radiology, 2022, 32, 213-222.	4.5	2
2	Deep Learning for Detecting Pneumothorax on Chest Radiographs after Needle Biopsy: Clinical Implementation. Radiology, 2022, 303, 433-441.	7.3	23
3	Artificial intelligence system for identification of false-negative interpretations in chest radiographs. European Radiology, 2022, 32, 4468-4478.	4.5	8
4	Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs. European Respiratory Journal, 2021, 57, 2003061.	6.7	58
5	Prediction of visceral pleural invasion in lung cancer on CT: deep learning model achieves a radiologist-level performance with adaptive sensitivity and specificity to clinical needs. European Radiology, 2021, 31, 2866-2876.	4.5	19
6	Variability in interpretation of low-dose chest CT using computerized assessment in a nationwide lung cancer screening program: comparison of prospective reading at individual institutions and retrospective central reading. European Radiology, 2021, 31, 2845-2855.	4. 5	9
7	Implementation of the cloud-based computerized interpretation system in a nationwide lung cancer screening with low-dose CT: comparison with the conventional reading system. European Radiology, 2021, 31, 475-485.	4.5	14
8	Deep learning–based automated detection algorithm for active pulmonary tuberculosis on chest radiographs: diagnostic performance in systematic screening of asymptomatic individuals. European Radiology, 2021, 31, 1069-1080.	4.5	29
9	2020 Clinical Practice Guideline for Percutaneous Transthoracic Needle Biopsy of Pulmonary Lesions: A Consensus Statement and Recommendations of the Korean Society of Thoracic Radiology. Korean Journal of Radiology, 2021, 22, 263.	3.4	31
10	Use of Artificial Intelligence-Based Software as Medical Devices for Chest Radiography: A Position Paper from the Korean Society of Thoracic Radiology. Korean Journal of Radiology, 2021, 22, 1743.	3.4	29
11	Clinical Implications of Size of Cavities in Patients With Nontuberculous Mycobacterial Pulmonary Disease: A Single-Center Cohort Study. Open Forum Infectious Diseases, 2021, 8, ofab087.	0.9	8
12	Optimum diameter threshold for lung nodules at baseline lung cancer screening with low-dose chest CT: exploration of results from the Korean Lung Cancer Screening Project. European Radiology, 2021, 31, 7202-7212.	4.5	6
13	Automatic prediction of left cardiac chamber enlargement from chest radiographs using convolutional neural network. European Radiology, 2021, 31, 8130-8140.	4.5	3
14	COVID-19 pneumonia on chest X-rays: Performance of a deep learning-based computer-aided detection system. PLoS ONE, 2021, 16, e0252440.	2.5	22
15	Deep Learning for Detection of Pulmonary Metastasis on Chest Radiographs. Radiology, 2021, 301, 455-463.	7.3	19
16	Deep learning computer-aided detection system for pneumonia in febrile neutropenia patients: a diagnostic cohort study. BMC Pulmonary Medicine, 2021, 21, 406.	2.0	1
17	Applications of artificial intelligence in the thorax: a narrative review focusing on thoracic radiology. Journal of Thoracic Disease, 2021, 13, 6943-6962.	1.4	10
18	Utility of FDG PET/CT for Preoperative Staging of Nonâ€"Small Cell Lung Cancers Manifesting as Subsolid Nodules With a Solid Portion of 3 cm or Smaller. American Journal of Roentgenology, 2020, 214, 514-523.	2.2	12

#	Article	IF	CITATIONS
19	Performance of a Deep Learning Algorithm Compared with Radiologic Interpretation for Lung Cancer Detection on Chest Radiographs in a Health Screening Population. Radiology, 2020, 297, 687-696.	7.3	45
20	Automated identification of chest radiographs with referable abnormality with deep learning: need for recalibration. European Radiology, 2020, 30, 6902-6912.	4.5	9
21	Growth and Clinical Impact of 6-mm or Larger Subsolid Nodules after 5 Years of Stability at Chest CT. Radiology, 2020, 295, 448-455.	7.3	27
22	Deep learning algorithm for surveillance of pneumothorax after lung biopsy: a multicenter diagnostic cohort study. European Radiology, 2020, 30, 3660-3671.	4.5	32
23	Extension of Coronavirus Disease 2019 on Chest CT and Implications for Chest Radiographic Interpretation. Radiology: Cardiothoracic Imaging, 2020, 2, e200107.	2.5	59
24	Clinical Implementation of Deep Learning in Thoracic Radiology: Potential Applications and Challenges. Korean Journal of Radiology, 2020, 21, 511.	3.4	48
25	Implementation of a Deep Learning-Based Computer-Aided Detection System for the Interpretation of Chest Radiographs in Patients Suspected for COVID-19. Korean Journal of Radiology, 2020, 21, 1150.	3.4	41
26	Undetected Lung Cancer at Posteroanterior Chest Radiography: Potential Role of a Deep Learning–based Detection Algorithm. Radiology: Cardiothoracic Imaging, 2020, 2, e190222.	2.5	14
27	Deep Learning for Chest Radiograph Diagnosis in the Emergency Department. Radiology, 2019, 293, 573-580.	7.3	107
28	Quantitative Thoracic Magnetic Resonance Criteria for the Differentiation of Cysts from Solid Masses in the Anterior Mediastinum. Korean Journal of Radiology, 2019, 20, 854.	3.4	14
29	Development and Validation of a Deep Learning–Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs. JAMA Network Open, 2019, 2, e191095.	5.9	284
30	Persistent pulmonary subsolid nodules: How long should they be observed until clinically relevant growth occurs?. Journal of Thoracic Disease, 2019, 11, S1408-S1411.	1.4	3
31	Effect of CT Reconstruction Algorithm on the Diagnostic Performance of Radiomics Models: A Task-Based Approach for Pulmonary Subsolid Nodules. American Journal of Roentgenology, 2019, 212, 505-512.	2.2	19
32	Development and Validation of a Deep Learning–based Automatic Detection Algorithm for Active Pulmonary Tuberculosis on Chest Radiographs. Clinical Infectious Diseases, 2019, 69, 739-747.	5.8	150
33	Thoracic recurrence in patients with curatively-resected colorectal cancer: incidence, risk factors, and value of chest CT as a postoperative surveillance tool. European Radiology, 2019, 29, 4303-4314.	4.5	0
34	Development and Validation of Deep Learning–based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs. Radiology, 2019, 290, 218-228.	7.3	372
35	Cone beam computed tomography virtual navigation-guided transthoracic biopsy of small (≶ cm) pulmonary nodules: impact of nodule visibility during real-time fluoroscopy. British Journal of Radiology, 2018, 91, 20170805.	2.2	9
36	Time-dependent analysis of incidence, risk factors and clinical significance of pneumothorax after percutaneous lung biopsy. European Radiology, 2018, 28, 1328-1337.	4.5	38

#	Article	IF	Citations
37	Pulmonary subsolid nodules: value of semi-automatic measurement in diagnostic accuracy, diagnostic reproducibility and nodule classification agreement. European Radiology, 2018, 28, 2124-2133.	4.5	24
38	Risk factors for haemoptysis after percutaneous transthoracic needle biopsies in 4,172 cases: Focusing on the effects of enlarged main pulmonary artery diameter. European Radiology, 2018, 28, 1410-1419.	4.5	19
39	Measurement of Multiple Solid Portions in Part-Solid Nodules for T Categorization: Evaluation of Prognostic Implication. Journal of Thoracic Oncology, 2018, 13, 1864-1872.	1.1	14
40	Open Bronchus Sign on CT: A Risk Factor for Hemoptysis after Percutaneous Transthoracic Biopsy. Korean Journal of Radiology, 2018, 19, 880.	3.4	7
41	Frequency, outcome, and risk factors of contrast media extravasation in 142,651 intravenous contrast-enhanced CT scans. European Radiology, 2018, 28, 5368-5375.	4.5	18
42	Validation of prediction models for risk stratification of incidentally detected pulmonary subsolid nodules: a retrospective cohort study in a Korean tertiary medical centre. BMJ Open, 2018, 8, e019996.	1.9	5
43	Persistent part-solid nodules with solid part of 5Âmm or smaller: Can the †follow-up and surgical resection after interval growth' policy have a negative effect on patient prognosis?. European Radiology, 2017, 27, 195-202.	4.5	18
44	Development and validation of a prediction model for measurement variability of lung nodule volumetry in patients with pulmonary metastases. European Radiology, 2017, 27, 3257-3265.	4.5	4
45	Predictive CT Features of Visceral Pleural Invasion by T1-Sized Peripheral Pulmonary Adenocarcinomas Manifesting as Subsolid Nodules. American Journal of Roentgenology, 2017, 209, 561-566.	2.2	38
46	Retrospective assessment of interobserver agreement and accuracy in classifications and measurements in subsolid nodules with solid components less than 8mm: which window setting is better?. European Radiology, 2017, 27, 1369-1376.	4.5	27
47	Relationship Between Ktrans and K1 with Simultaneous Versus Separate MR/PET in Rabbits with VX2 Tumors. Anticancer Research, 2017, 37, 1139-1148.	1.1	2
48	Impact of Reconstruction Algorithms on CT Radiomic Features of Pulmonary Tumors: Analysis of Intra- and Inter-Reader Variability and Inter-Reconstruction Algorithm Variability. PLoS ONE, 2016, 11, e0164924.	2.5	108
49	Microscopic Invasions, Prognoses, and Recurrence Patterns of Stage I Adenocarcinomas Manifesting as Part-Solid Ground-Glass Nodules. Medicine (United States), 2016, 95, e3419.	1.0	5
50	Temporal Changes of Texture Features Extracted From Pulmonary Nodules on Dynamic Contrast-Enhanced Chest Computed Tomography. Investigative Radiology, 2016, 51, 569-574.	6.2	16
51	Digital Tomosynthesis for Evaluating Metastatic Lung Nodules: Nodule Visibility, Learning Curves, and Reading Times. Korean Journal of Radiology, 2015, 16, 430.	3.4	11
52	Usefulness of a Metal Artifact Reduction Algorithm for Orthopedic Implants in Abdominal CT: Phantom and Clinical Study Results. American Journal of Roentgenology, 2015, 204, 307-317.	2.2	47
53	Pulmonary adenocarcinomas appearing as part-solid ground-glass nodules: Is measuring solid component size a better prognostic indicator?. European Radiology, 2015, 25, 558-567.	4.5	75
54	Switching bipolar hepatic radiofrequency ablation using internally cooled wet electrodes: comparison with consecutive monopolar and switching monopolar modes. British Journal of Radiology, 2015, 88, 20140468.	2.2	26

Eui Jin Hwang

#	Article	IF	CITATION
55	Monopolar Radiofrequency Ablation Using a Dual-Switching System and a Separable Clustered Electrode: Evaluation of the <i>In Vivo </i> Efficiency. Korean Journal of Radiology, 2014, 15, 235.	3.4	24
56	Ultra-low Peak Voltage CT Colonography: Effect of Iterative Reconstruction Algorithms on Performance of Radiologists Who Use Anthropomorphic Colonic Phantoms. Radiology, 2014, 273, 759-771.	7.3	16
57	Intravoxel Incoherent Motion Diffusion-Weighted Imaging of Pancreatic Neuroendocrine Tumors. Investigative Radiology, 2014, 49, 396-402.	6.2	48
58	Portable high-intensity focused ultrasound system with 3D electronic steering, real-time cavitation monitoring, and 3D image reconstruction algorithms: a preclinical study in pigs. Ultrasonography, 2014, 33, 191-199.	2.3	8
59	Early response evaluation for recurrent high grade gliomas treated with bevacizumab: a volumetric analysis using diffusion-weighted imaging. Journal of Neuro-Oncology, 2013, 112, 427-435.	2.9	18